
Many of the slides in this lecture are either from or adapted from slides provided by the
authors of the textbook “Computer Systems: A Programmer’s Perspective.” 2nd Edition and
are provided from the website of Carnegie-Mellon University, course 15-213, taught by
Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated “Supplied by
CMU” in the notes section of the slides.

CS33 Intro to Computer Systems VII–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Introduction to C

Part 7

x’s value will be 2, since the result of the (integer) division of i by j will be 0.

CS33 Intro to Computer Systems VII–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Implicit Conversions (1)

float x, y=2.0;

int i=1, j=2;

x = i/j + y;

/* what's the value of x? */

Here the values of i and j are converted to float before being assigned to a and
b, thus the value assigned to x is 2.5.

CS33 Intro to Computer Systems VII–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Implicit Conversions (2)

float x, y=2.0;

int i=1, j=2;
float a, b;

a = i;

b = j;
x = a/b + y;

/* now what's the value of x? */

Here we do the int-to-float conversion explicitly; x’s value will be 2.5.

CS33 Intro to Computer Systems VII–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Explicit Conversions: Casts

float x, y=2.0;

int i=1, j=2;

x = (float)i/(float)j + y;

/* and now what's the value of x? */

“Coercion” is a commonly accepted term for one use of casts. “Intimidation” is
not. The concept is more commonly known as a “sidecast”. Coercion means to
convert something of one datatype to another. Intimidation (or sidecasting)
means to treat an instance one datatype as being another datatype without
doing any conversion of the actual data. Intimidation works only for pointer
datatypes.

CS33 Intro to Computer Systems VII–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Purposes of Casts

• Coercion
int i, j;

float a;
a = (float)i/(float)j;

• Intimidation
float x, y;

// sizeof(float) == 4

swap((int *)&x, (int *)&y);

modify the
value
appropriately

itʼs ok as is
(trust me!)

CS33 Intro to Computer Systems VII–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

• Will this work?
double x, y; //sizeof(double) == 8

...

swap((int *)&x, (int *)&y);

a) yes
b) no

The call to swap makes sense as long as what x and y point to are the same
size as int's.

The moral is to be careful with casting, particularly intimidation casts, since
they effectively turn off type checking.

CS33 Intro to Computer Systems VII–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Caveat Emptor

• Casts tell the C compiler:
“Shut up, I know what I’m doing!”

• Sometimes true
float x, y;

swap((int *)&x, (int *)&y);

• Sometimes false
double x, y;

swap((int *)&x, (int *)&y);

The void * type is an exception to the rule that the type of the target of a
pointer must be known.

CS33 Intro to Computer Systems VII–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Nothing, and More …

• void means, literally, nothing:
void NotMuch(void) {

printf("I return nothing\n");
}

• What does void * mean?
– it’s a pointer to anything you feel like

» a generic pointer

Dereferencing a pointer must result in a value with a useful type. “void” is not
a useful type.

CS33 Intro to Computer Systems VII–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Rules

• Use with other pointers
int *x;

void *y;
x = y; /* legal */

y = x; /* legal */

• Dereferencing
void *z;
func(*z); /* illegal!*/

func(*(int *)z); /* legal */

Can we write a version of swap that handles a variety of data types?

CS33 Intro to Computer Systems VII–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Swap, Revisited

void swap(int *i, int *j) {

int tmp;
tmp = *j; *j = *i; *i = tmp;

}

/* can we make this generic? */

Note that there is a function in the C library that one may use to copy
arbitrary amounts of data — it’s called memmove. To see its documentation,
use the Linux command “man memmove”.

CS33 Intro to Computer Systems VII–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

An Application: Generic Swap

void gswap (void *p1, void *p2,

int size) {
int i;

for (i=0; i < size; i++) {

char tmp;

tmp = ((char *)p1)[i];
((char *)p1)[i] = ((char *)p2)[i];

((char *)p2)[i] = tmp;

}

}

CS33 Intro to Computer Systems VII–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Using Generic Swap

short a=1, b=2;

gswap(&a, &b, sizeof(short));

int x=6, y=7;

gswap(&x, &y, sizeof(int));

int A[] = {1, 2, 3}, B[] = {7, 8, 9};

gswap(A, B, sizeof(A));

CS33 Intro to Computer Systems VII–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Fun with Functions (1)

void ArrayDouble(int A[], int len) {

int i;
for (i=0; i<len; i++)

A[i] = 2*A[i];

}

Here func is declared to be a pointer to a function that takes an int as an
argument and returns an int.

What’s the difference between a pointer to a function and a function? A pointer
to a function is, of course, the address of the function. The function itself is
the code comprising the function. Thus, strictly speaking, if func is the name
assigned to a function, func really represents the address of the function. You
might think that we should invoke the function by saying “*func”, but it’s
understood that this is what we mean when we say “func”. Thus, when one
calls ArrayBop, one supplies the name of the desired function as the third
argument, without prepending “&”.

CS33 Intro to Computer Systems VII–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Fun with Functions (2)

void ArrayBop(int A[],

int len,
int (*func)(int)) {

int i;

for (i=0; i<len; i++)

A[i] = (*func)(A[i]);
}

Here we define another function that takes a single int and returns an int,
and pass it to ArrayBop.

CS33 Intro to Computer Systems VII–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Fun with Functions (3)

int triple(int arg) {

return 3*arg;
}

int main() {

int A[20];
… /* initialize A */

ArrayBop(A, 20, triple);

return 0;

}

CS33 Intro to Computer Systems VII–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Laziness …

• Why type the declaration
void *(*f)(void *, void *);

• You could, instead, type
MyType f;

• (If, of course, you can somehow define
MyType to mean the right thing)

CS33 Intro to Computer Systems VII–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

typedef

• Allows one to create new names for
existing types
typedef int *IntP_t;

IntP_t x;

–means the same as
int *x;

A standard convention for C is that names of datatypes end with “_t”. Note that
it’s not necessary to give the struct a name in this example (we could have
omitted the “complex” following “struct”). It's also not necessary for the name
of the type to be different from the name of the struct. Though it's a bit
confusing, we could have coded the above as:

typedef struct complex {

float real;

float imag;

} complex;

complex i, *ip;

After doing this, "struct complex" and "complex" would mean exactly the same
thing.

CS33 Intro to Computer Systems VII–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

More typedefs

typedef struct complex {

float real;
float imag;

} complex_t;

complex_t i, *ip;

MyFunc_t is the type of a function that takes two void * arguments and
returns a void *. Note that f, declared as a MyFunc_t, is function, not a
pointer to a function.

CS33 Intro to Computer Systems VII–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

And …

typedef void *(MyFunc_t)(void *, void *);

MyFunc_t f;

// you must do its definition the long way

void *f(void *a1, void *a2) {

…

}

VI–20

CS33 Intro to Computer Systems VII–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Not a Quiz

• What’s A?

typedef double X_t[N];
X_t A[M];

a) an array of M doubles
b) an MxN array of doubles
c) an NxM array of doubles
d) a syntax error

Many of the slides in this lecture are either from or adapted from slides provided by the
authors of the textbook “Computer Systems: A Programmer’s Perspective.” 2nd Edition and
are provided from the website of Carnegie-Mellon University, course 15-213, taught by
Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated “Supplied by
CMU” in the notes section of the slides.

CS33 Intro to Computer Systems VII–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Data Representation, Part 1

In the diagram, x is an int occupying bytes 134217728, 134217729, 134217730, and
134217731. Its address is 134217728; its size is 4 (bytes).

II–22

CS33 Intro to Computer Systems VII–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Representing Data in Memory

• x is a 4-byte integer
– how do the 32 bits represent its

value?
x

0:
1:
2:
3:
4:
5:

134217728:
134217729:
134217730:
134217731:

4294967294:
4294967295:

.

.

.

.

.

.

If a computer word is to be interpreted as an unsigned integer, we can do so as shown in the
slide, where w is the number of bits in the word.

CS33 Intro to Computer Systems VII–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Unsigned Integers

value =

bw-1 bw-2 bw-3 … b2 b1 b0

!
𝒊"𝟎

𝒘%𝟏

𝒃𝒊 # 𝟐𝒊

We might also want to interpret the contents of a computer word as a signed integer. There
are a few options for how to do this. One straightforward approach is shown in the slide,
where we use the high-order (leftmost) bit as the “sign bit”: 0 means positive and 1 means
negative. However, this has the somewhat weird result that there are two representations of
zero. This further means that the computer would have to have two implementations of
arithmetic instructions: one for signed arithmetic, the other for unsigned arithmetic.

CS33 Intro to Computer Systems VII–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signed Integers

• Sign-magnitude

value =

• two representations of zero!
• computer must have two sets of instructions

• one for signed arithmetic, one for unsigned

bw-1 bw-2 bw-3 … b2 b1 b0

sign magnitude

In ones' complement, a number is positive if its leftmost bit is zero negative otherwise. We
negate a number by complementing all its bits. Thus, if the leftmost bit is zero, a one in
position i of the remaining bits contributes a value of 2i and a zero contributes nothing. But
if the leftmost bit is one, a zero in position i contributes a value of -2i and a one contributes
nothing.

Note that the most-significant bit serves as the sign bit. But, as with sign-magnitude, the
computer would need two sets of instructions: one for signed arithmetic and one for
unsigned.

CS33 Intro to Computer Systems VII–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signed Integers
• Onesʼ complement

– negate a number by forming its bit-wise
complement

» e.g., (-1)∙01101011 = 10010100

bw-1 = 0 Þ non-negative number

value =

bw-1 = 1 Þ negative number

value =

two zeros!

There’s only one zero!

Two’s complement is used on pretty much all of today’s computers to represent signed
integers.

Note that the high-order (most-significant) bit represents -2w-1. All the other bits represent
positive numbers.

CS33 Intro to Computer Systems VII–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signed Integers

• Two’s complement
bw-1 = 0 Þ non-negative number

bw-1 = 1 Þ negative number

value =

value =

one zero!

CS33 Intro to Computer Systems VII–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Example

• w = 4
0000: 0
0001: 1
0010: 2
0011: 3
0100: 4
0101: 5
0110: 6
0111: 7

1000: -8
1001: -7
1010: -6
1011: -5
1100: -4
1101: -3
1110: -2
1111: -1

To negate a two’s-complement number, simply complement each of its bits, then add one to
the result. We show why this works in the next slide.

CS33 Intro to Computer Systems VII–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signed Integers

• Negating two’s complement

– how to compute –value?
(~value)+1

value = −bw−12
w−1+ bi2

i

i=0

w−2

∑

If we add to the two’s complement representation of a w-bit number the result of adding one
to its bitwise complement, we get a w+1-bit number whose low-order w bits are zeroes and
whose high-order bit is one. However, since we’re constrained to only w bits, the result is a
w-bit value of all zeroes, plus an overflow. If we ignore the overflow, the result is zero.

CS33 Intro to Computer Systems VII–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signed Integers

• Negating two’s complement (continued)

value + (~value + 1)

= (value + ~value) + 1

= (2w−1) + 1

= 2w

0 0 0 … 0 0 0

w

1=

CS33 Intro to Computer Systems VII–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

• We have a computer with 4-bit words that
uses two’s complement to represent signed
integers. What is the result of subtracting
0010 (2) from 0001 (1)?
a) 1110
b) 1001
c) 0111
d) 1111

Why the signed integer types use the arithmetic right shift will be clear by the end of this
lecture.

CS33 Intro to Computer Systems VII–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signed vs. Unsigned in C

• char, short, int, and long
– signed integer types
– right shift (>>) is arithmetic

• unsigned char, unsigned short, unsigned int,
unsigned long

– unsigned integer types
– right shift (>>) is logical

Supplied by CMU.

CS33 Intro to Computer Systems VII–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Numeric Ranges
• Unsigned Values

– UMin = 0
000…0

– UMax = 2w – 1
111…1

• Two’s Complement Values
– TMin = –2w–1

100…0
– TMax = 2w–1 – 1

011…1
• Other Values

– Minus 1
111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

Values for W = 16

Supplied by CMU.

CS33 Intro to Computer Systems VII–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Values for Different Word Sizes

• Observations
|TMin | = TMax + 1

» Asymmetric range
UMax = 2 * TMax + 1

 W
 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

• C Programming
• #include <limits.h>
• declares constants, e.g.,

• ULONG_MAX
• LONG_MAX
• LONG_MIN

• values platform-specific

CS33 Intro to Computer Systems VII–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 3

• What is –TMin (assuming two’s complement
signed integers)?
a) TMin
b) TMax
c) 0
d) 1

Unsigned computer arithmetic is performed modulo 2 to the power of the computer’s word
size. The outer ring of the figure demonstrates arithmetic modulo 24. To see the result, for
example, of adding 3 to 2, start at 2 and go around the ring three units in the clockwise
direction. If we add 5 to 14, we start at 14 and move 5 units clockwise, to 3. Similarly, to
subtract 3 from 1, we start at one and move three units counterclockwise to 14.

What about two’s-complement computer arithmetic? We know that the values encoded in a
4-bit computer word range from -8 to 7. How do we arrange them in the ring? As shown in
the second ring, it makes sense for the non-negative numbers to be in the same positions as
the corresponding unsigned values. It clearly makes sense for the integer coming just before
0 to be -1, the integer just before -1 to be -2, etc. Thus, since we have a ring, the integer
following 7 is -8. Now we can see how arithmetic works for two’s-complement numbers.
Adding 3 to 2 works just as it does for unsigned numbers. Subtracting 3 from 1 results in -
2. But adding 3 to 6 results in -7; and adding 5 to -2 results in 3.

The innermost ring shows the bit encodings for the unsigned and two’s-complement values.
The point of all this is that, with only one implementation of arithmetic, we can handle both
unsigned and two’s-complement values. Thus, adding unsigned 5 and 9 is equivalent to
adding two’s-complement 5 and -7. The result will 1110, which, if interpreted as an
unsigned value is 14, but if interpreted as a two’s-complement value is -2.

CS33 Intro to Computer Systems VII–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

4-Bit Computer Arithmetic
0

0 1
1

22

33
44

55

6
6

7
7

8
-89

-7

10
-6

11 -5
12 -4

13 -3

14
-2

15
-1

0000 0001

0010
0011

0100
0101

0110
011110001001

10
10

10
11

11
00

11
01

111
0

1111

Supplied by CMU.

Note that the kind of casting done here is what we called "intimidation" in the
previous lecture: no actual conversion takes place, but the value is
reinterpreted according to the cast.

CS33 Intro to Computer Systems VII–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signed vs. Unsigned in C
• Constants

– by default are considered to be signed integers
– unsigned if have “U” as suffix

0U, 4294967259U

• Casting
– explicit casting between signed & unsigned

int tx, ty;

unsigned ux, uy; // “unsigned” means “unsigned int”
tx = (int) ux;
uy = (unsigned int) ty;

– implicit casting also occurs via assignments and function calls
tx = ux;

uy = ty;

Supplied by CMU.

CS33 Intro to Computer Systems VII–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

• Expression evaluation
– if there is a mix of unsigned and signed in single expression,

signed values implicitly cast to unsigned
– including comparison operations <, >, ==, <=, >=
– examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

Casting Surprises

Constant1 Constant2 Relation Evaluation
0 0U == unsigned
-1 0 < signed
-1 0U > unsigned
2147483647 -2147483647-1 > signed
2147483647U -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int)2147483648U > signed

CS33 Intro to Computer Systems VII–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 4

What is the value of
(unsigned long)-1 - (long)ULONG_MAX

???

a) 0
b) -1
c) 1
d) ULONG_MAX

Supplied by CMU.

CS33 Intro to Computer Systems VII–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Sign Extension
• Task:

– given w-bit signed integer x
– convert it to w+k-bit integer with same value

• Rule:
– make k copies of sign bit:
– X ¢ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB • • •X

X ¢ • • • • • •

• • •

w

wk

Supplied by CMU.

CS33 Intro to Computer Systems VII–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Sign Extension Example

• Converting from smaller to larger integer data type
– C automatically performs sign extension

short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Sign extension clearly works for positive and zero values (where the sign bit is zero). But
does it work for negative values? The first line of the slide shows the computation of the
value of a w-bit item with a sign bit of one (i.e., it’s negative). The next two lines show what
happens if we extend this to a w+1-bit item, extending the sign bit. What had been the sign
bit becomes one of the value bits, and its contribution to the value is now positive rather
than negative. But this is compensated by the new sign bit, whose contribution is a negative
value, twice as large as the original sign bit. Thus, the net effect is for there to be no change
in the value.

We do this again, extending to a w+2-bit item, and again, the resulting value is the same as
what we started with.

CS33 Intro to Computer Systems VII–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Does it Work?
valw = − 2w−1 + bi ⋅2

i

i=0

w−2
∑

valw+1 = − 2w + 2w−1 + bi ⋅2
i

i=0

w−2
∑

= − 2w−1 + bi ⋅2
i

i=0

w−2
∑

valw+2 = − 2w+1 + 2w + 2w−1 + bi ⋅2
i

i=0

w−2
∑

= − 2w + 2w−1 + bi ⋅2
i

i=0

w−2
∑

= − 2w−1 + bi ⋅2
i

i=0

w−2
∑

Supplied by CMU.

CS33 Intro to Computer Systems VII–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Unsigned Multiplication

• Standard multiplication function
– ignores high order w bits

• Implements modular arithmetic
UMultw(u , v) = u · v mod 2w

• • •
• • •

u
v*

• • •u * v
• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)
• • •

Supplied by CMU.

Why is it that the "true product" is different from that of unsigned multiplication?
Consider what the true product should be if the multiplier is -1 and the
multiplicand is 1. The multiplier is a w-bit word of all ones; the multiplicand is a
w-bit word of all zeroes except for the least-significant bit, which is 1. The high-
order w bits of the true product should be all ones (since it's negative), but with
unsigned multiplication they'd be all zeroes. However, since we're ignoring the
high-order w bits, this doesn't matter.

CS33 Intro to Computer Systems VII–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signed Multiplication

• Standard multiplication function
– ignores high order w bits
– some of which are different from those of

unsigned multiplication
– lower bits are the same

• • •
• • •

u
v*

• • •u * v
• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)
• • •

Supplied by CMU.

CS33 Intro to Computer Systems VII–44 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Power-of-2 Multiply with Shift
• Operation

– u << k gives u * 2k

– both signed and unsigned

• Examples
u << 3 == u * 8
u << 5 - u << 3 == u * 24

– most machines shift and add faster than multiply
» compiler generates this code automatically

• • •
0 0 1 0 0 0•••

u
2k*

u * 2ktrue product: w+k bits

operands: w bits

discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

Supplied by CMU.

CS33 Intro to Computer Systems VII–45 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Unsigned Power-of-2 Divide with Shift
• Quotient of unsigned and power of 2

– u >> k gives ë u / 2k û

– uses logical shift

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101
x >> 1 7606.5 7606 1D B6 00011101 10110110
x >> 4 950.8125 950 03 B6 00000011 10110110
x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••

u
2k/

u / 2kdivision:

operands:
•••

k
••• •••

•••0 0 0••• •••

ë u / 2k û •••result:

.

binary point

0

0 0 0•••0

Supplied by CMU.

Recall that with two's-complement, all the bits other than the most-significant
represent positive values. Thus, we are shifting off (to the right) bits that
should be adding a positive value to the number, but now are lost. Thus, if any
of these bits are one, after shifting the resulting value will be less than it
should be (i.e., more negative).

CS33 Intro to Computer Systems VII–46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signed Power-of-2 Divide with Shift
• Quotient of signed and power of 2

– x >> k gives ë x / 2k û

– uses arithmetic shift
– rounds wrong direction when x < 0

0 0 1 0 0 0•••
x
2k/

x / 2kdivision:

operands:
•••

k
••• •••

•••0 ••• •••
RoundDown(x / 2k) •••result:

.

binary point

0 •••

 Division Computed Hex Binary
y -15213 -15213 C4 93 11000100 10010011
y >> 1 -7606.5 -7607 E2 49 11100010 01001001
y >> 4 -950.8125 -951 FC 49 11111100 01001001
y >> 8 -59.4257813 -60 FF C4 11111111 11000100

Supplied by CMU.

If the least-significant k bits are all zeroes, then adding in the bias and shifting
right by k bits eliminates any effect of adding the bias.

CS33 Intro to Computer Systems VII–47 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Correct Power-of-2 Divide
• Quotient of negative number by power of 2

– want é x / 2k ù (round toward 0)
– compute as ë (x+2k-1)/ 2k û

» in C: (x + (1<<k)-1) >> k
» biases dividend toward 0

Case 1: no rounding

divisor:

dividend:

0 0 1 0 0 0•••

x

2k/
é u / 2k ù

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

binary point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect

Supplied by CMU.

If any of the least-significant k bits are one, then adding the bias to them
causes a carry of one to the bits to their left. Thus, after shifting, the number
that's represented by the remaining bits is one greater (less negative) than it
would have been if the bias had not been added.

CS33 Intro to Computer Systems VII–48 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Correct Power-of-2 Divide (Cont.)

divisor:

dividend:

Case 2: rounding

0 0 1 0 0 0•••

x

2k/
é x / 2k ù

•••

k
1 ••• •••

1 •••0 1 1••• .

binary point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

incremented by 1

incremented by 1

Supplied by CMU.

Note that “sizeof” returns an unsigned value. (Recall that, when mixing signed
and unsigned items in an expression, the result will be unsigned.)

CS33 Intro to Computer Systems VII–49 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Why Should I Use Unsigned?
• Don’t use just because number nonnegative

– easy to make mistakes
unsigned i;

for (i = cnt-2; i >= 0; i--)

a[i] += a[i+1];

– can be very subtle
#define DELTA sizeof(int)

int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)

. . .

• Do use when using bits to represent sets
– logical right shift, no sign extension

