
We begin our discussion of machine programming by covering some of the general
principles involved. We look at a generic "machine language" that is similar, but not
identical, to that used on Intel processors. After this brief introduction, we focus on the
machine language used by Intel processors.

CS33 Intro to Computer Systems IX–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Intro to Machine Programming

CS33 Intro to Computer Systems IX–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Machine Model

Processor
(aka CPU)

Memory
(aka RAM)

instructions
and data

data

Generally, we think of their being two sorts of memory: that containing instructions and
that containing data. Programs, in general, don’t modify their own instructions on the
fly. In reality, there’s only one sort of memory, which holds everything. However, we
arrange so that memory holding instructions cannot be modified and that, usually,
memory holding data cannot be executed as instructions.

Of course, programs such as compilers and linkers produce executable code as data,
but they don’t directly execute it.

CS33 Intro to Computer Systems IX–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Memory

Instructions

Data

Instructions
are Dataor

CS33 Intro to Computer Systems IX–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Processor: Some Details

Instruction pointer

Condition codes

Execution
engine

CS33 Intro to Computer Systems IX–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Processor: Basic Operation

while (forever) {
fetch instruction IP points at
decode instruction
fetch operands
execute
store results
update IP and condition code

}

CS33 Intro to Computer Systems IX–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Instructions ...

Op code Operand1 Operand2 ...

CS33 Intro to Computer Systems IX–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Operands

• Form
– immediate vs. reference

» value vs. address

• How many?
– 3

» add a,b,c
• c = a + b

– 2
» add a,b

• b += a

CS33 Intro to Computer Systems IX–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Operands (continued)

• Accumulator
– special memory in the processor

» known as a register
» fast access

– allows single-operand instructions
» add a

• acc += a
» add b

• acc += b

Note we’re using the accumulator in two-operand instructions. The “%” makes it clear
that “acc” is a register. The “$” indicates that what follows is an immediate operand; i.e.,
it’s a value to be used as is, rather than as an address or a register.

CS33 Intro to Computer Systems IX–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

From C to Assembler ...

a = (b + c) * d;

mov b,%acc
add c,%acc
mul d,%acc
mov %acc,a

if (a<b)

c = 1;
else

d = 1;

cmp a,b

jge .L1
mov $1,c
jmp .L2

.L1
mov $1,d

.L2

immediate
operand

immediate
operand

We have one set of arithmetic instructions that work with both unsigned and signed
(two’s complement) interpretations of the bit values in a word.

The overflow flag is set when the result, interpreted as a two’s-complement value should
be positive, but won’t fit in the word and thus becomes a negative number, or should be
negative, but won’t fit in the word and thus becomes a positive number.

The carry flag is set when computing the result, interpreted as an unsigned value,
requires a borrow out of the most-significant bit (i.e., computing b-a when a is greater
than b), or when it results in an overflow (e.g., for 32-bit unsigned integers, when the
result should be greater than or equal to 232 (but can't fit in a 32-bit word).

CS33 Intro to Computer Systems IX–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Condition Codes
• Set of flags giving status of most recent

operation:
– zero flag

» result was zero
– sign flag

» for signed arithmetic interpretation: sign bit is set
– overflow flag

» for signed arithmetic interpretation
– carry flag (generated by carry or borrow out of most-

significant bit)
» for unsigned arithmetic interpretation

• Set implicitly by arithmetic instructions
• Set explicitly by compare instruction

– cmp a,b
» sets flags based on result of b-a

CS33 Intro to Computer Systems IX–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Examples (1)

• Assume 32-bit arithmetic

• x is 0x80000000
– TMIN if interpreted as twoʼs-complement
– 231 if interpreted as unsigned

• x-1 (0x7fffffff)
– TMAX if interpreted as twoʼs-complement
– 231-1 if interpreted as unsigned
– zero flag is not set
– sign flag is not set
– overflow flag is set
– carry flag is not set

CS33 Intro to Computer Systems IX–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Examples (2)

• x is 0xffffffff
– -1 if interpreted as twoʼs-complement
– UMAX (232-1) if interpreted as unsigned

• x+1 (0x00000000)
– zero under either interpretation
– zero flag is set
– sign flag is not set
– overflow flag is not set
– carry flag is set

CS33 Intro to Computer Systems IX–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Examples (3)

• x is 0xffffffff
– -1 if interpreted as twoʼs-complement
– UMAX (232-1) if interpreted as unsigned

• x+2 (0x00000001)
– (+)1 under either interpretation
– zero flag is not set
– sign flag is not set
– overflow flag is not set
– carry flag is set

CS33 Intro to Computer Systems IX–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1
• Set of flags giving status of most

recent operation:
– zero flag

» result was zero
– sign flag

» for signed arithmetic interpretation: sign
bit is set

– overflow flag
» for signed arithmetic interpretation

– carry flag (generated by carry or borrow
out of most-significant bit)
» for unsigned arithmetic interpretation

• Set explicitly by compare
instruction

– cmp a,b
» sets flags based on result of b-a

Which flags are set to
one by “cmp 2,1”?

a) overflow flag only
b) carry flag only
c) sign and carry

flags only
d) sign and overflow

flags only
e) sign, overflow, and

carry flags

Jump instructions cause the processor to start executing instructions at some specified
address. For conditional jump instructions, whether to jump or not is determined by the
values of the condition codes. Fortunately, rather than having to specify explicitly those
values, one may use mnemonics as shown in the slide.

We'll see examples of their use in an upcoming lecture, when we're looking at x86
assembler instructions.

CS33 Intro to Computer Systems IX–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Jump Instructions

• Unconditional jump
– just do it

• Conditional jump
– to jump or not to jump determined by condition-

code flags
– field in the op code indicates how this is computed
– in assembler language, simply say

» je
• jump on equal

» jne
• jump on not equal

» jg
• jump on greater than (signed)

» etc.

In the C code above, the assignment to a might be coded in assembler as shown in the
box in the lower left. But this brings up the question, where are the values represented
by a, b, c, and d? Variable names are part of the C language, not assembler. Let’s
assume that these global variables are located at addresses 1000, 1004, 1008, and
1012, as shown on the right. Thus, correct assembler language would be as in the
middle box, which deals with addresses, not variable names. Note that "mov 1004,%acc"
means to copy the contents of location 1004 to the accumulator register; it does not
mean to copy the integer 1004 into the register!

Beginning with this slide, whenever we draw pictures of memory, lower memory
addresses are at the bottom, higher addresses are at the top. This is the opposite
of how we’ve been drawing pictures of memory in previous slides.

CS33 Intro to Computer Systems IX–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Addresses

int a, b, c, d;

int main() {
a = (b + c) * d;
...

}

global
variables

d1012:
c1008:
b1004:
a1000:mov b,%acc

add c,%acc
mul d,%acc
mov %acc,a

mov 1004,%acc
add 1008,%acc
mul 1012,%acc
mov %acc,1000

Memory

Here we rearrange things a bit. b is a global variable, but a is a local variable within
func, and c and d are arguments. The issue here is that the locations associated with a,
c, and d will, in general, be different for each call to func. Thus, we somehow must
modify the assembler code to take this into account.

CS33 Intro to Computer Systems IX–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Addresses

int b;

int func(int c, int d) {
int a;
a = (b + c) * d;
...

}

mov ?,%acc
add ?,%acc
mul ?,%acc

mov %acc,?

• One copy of b for duration of
program’s execution
• b’s address is the same

for each call to func
• Different copies of a, c, and d

for each call to func
• addresses are different in

each call

Note that both positive and negative offsets might be used.

CS33 Intro to Computer Systems IX–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Relative Addresses

• Absolute address
– actual location in

memory
• Relative address

– offset from some
other location

Memory
0

1000

264-1

Blob

10000
Datum 100

• Blob’s absolute
address is 10000

• Datum’s relative
address (to Blob)
is 100
– its absolute

address is
10100

Here we load the value 10,000 into the base register (recall that the “$” means what
follows is a literal value; a “%” sign means that what follows is the name of a register),
then store the value 10 into the memory location 10100 (the contents of the base
register plus 100): the notation n(%base) means the address obtained by adding n to the
contents of the base register.

CS33 Intro to Computer Systems IX–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Base Registers

mov $10000, %base

mov $10, 100(%base)

Memory
0

1000

264-1

Blob

10000
Datum 100

base register

Here we return to our earlier example. We assume that, as part of the call to func, the
base register is loaded with the address of the beginning of func’s current stack frame,
and that the local variable a and the parameters c and d are located within the frame.
Thus, we refer to them by their offset from the beginning of the stack frame, which are
assumed to be -16, -8, and -12. Since the stack grows from higher addresses to lower
addresses, these offsets are negative. Note that the first assembler instruction copies the
contents of location 1000 into %acc.

CS33 Intro to Computer Systems IX–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Addresses

int b;

int func(int c, int d) {
int a;
a = (b + c) * d;
...

}

mov 1000,%acc
add -8(%base),%acc
mul -12(%base),%acc

mov %acc,-16(%base)

global
variables

Memory

earlier stack
frame

previous stack
frame

func stack
frame

b1000:

c
d
a

base ®

CS33 Intro to Computer Systems IX–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

long b;

int func(long c, long d) {
long a;
a = (b + c) * d;
...

}

mov 1000,%acc
add -8(%base),%acc
mul -12(%base),%acc

mov %acc,-16(%base)

global
variables

Memory

earlier stack
frame

previous stack
frame

func stack
frame

b1000:

c
d
a

base ®

Suppose the value in base is
10,000. What is the address of
c?

a) 10,008
b) 10,004
c) 9996
d) 9992

We’ve now seen four registers: the instruction pointer, the accumulator, the base
register, and the condition codes. The accumulator is used to hold intermediate results
for arithmetic; the base register is used to hold addresses for relative addressing. There’s
no particular reason why the accumulator can’t be used as the base register and vice
versa: thus, they may be used interchangeably. Furthermore, it is useful to have more
than two such dual-purpose registers. As we will see, the x86 architecture has eight
such registers; the x86-64 architecture has 16.

CS33 Intro to Computer Systems IX–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Registers

Instruction pointer

Condition codes

Execution
engine

Accumulator
Base register

more
interchangeable

Why do we make the distinction between registers and memory? Registers are in the
processor itself and can be read from and written to very quickly. Memory is on separate
hardware and takes much more time to access than registers do. Thus, operations
involving only registers can be executed very quickly, while significantly more time is
required to access memory. Processors typically have relatively few registers (the IA-32
architecture has eight, the x86-64 architecture has 16; some other architectures have
many more, perhaps as many as 256); memory is measured in gigabytes.

Note that memory access-time is mitigated by the use of in-processor caches, something
that we will discuss in a few weeks.

CS33 Intro to Computer Systems IX–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Registers vs. Memory

Memory
(aka RAM)

instructions
and data

data

Instruction pointer

Condition codes

Execution
engine

Accumulator
Base register

more

a relatively long
distance

The early computers of the x86 family had 16-bit words; starting with the 386, they
supported 32-bit words.

CS33 Intro to Computer Systems IX–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Intel x86
• Intel created the 8008 (in 1972)
• 8008 begat 8080
• 8080 begat 8086
• 8086 begat 8088
• 8086 begat 286
• 286 begat 386
• 386 begat 486
• 486 begat Pentium
• Pentium begat Pentium Pro
• Pentium Pro begat Pentium II
• ad infinitum

IA32

232 = 4 gigabytes.

264 = 16 exbibytes.

All SunLab computers are x86-64.

CS33 Intro to Computer Systems IX–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

264

• 232 used to be considered a large number
– one couldn’t afford 232 bytes of memory, so no

problem with that as an upper bound
• Intel (and others) saw need for machines with

64-bit addresses
– devised IA64 architecture with HP

» became known as Itanium
» very different from x86

• AMD also saw such a need
– developed 64-bit extension to x86, called x86-64

• Itanium flopped
• x86-64 dominated
• Intel, reluctantly, adopted x86-64

ARM originally stood for Acorn RISC machine. Acorn was a British computer company
that was established in 1978, but no longer exists. RISC stands for Reduced Instruction
Set Computer. The RISC concept was devised in the 1980s and was very popular in the
80s and 90s. The idea is to design computers with relatively few instructions, but
implement those instructions so they can execute very quickly. The fastest computers in
the 80s and 90s were RISC computers. But Intel, who built computer chips with fairly
complex instruction sets (CISC), learned how to make their computers run really fast as
well. That, coupled with the fact that Windows ran exclusively on Intel, helped Intel stay
in the lead.

ARM later became Advanced RISC Machine. Now, it doesn’t stand for anything, It’s just
ARM.

Apple (whose computers originally ran Motorola 68000 processors before they switched
to Intel) decided that they could make more cost-effective and faster processors by
adapting the ARM design and including GPUs (graphics processing units). GPUs are
specialized processors that help with image processing, but also can be used with other
computations that have a lot of inherent parallelism. Apple refers to their new chips as
M1 and M2 (presumably an M3 is not far behind).

CS33 Intro to Computer Systems IX–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Why Intel?

• Most CS Department machines are Intel
• An increasing number of personal machines

are not
– Apple has switched to ARM
– packaged into their M1, M2, etc. chips

» “Apple Silicon”
• Intel x86-64 is very different from ARM64 ⏤

internally
• Programming concepts are similar
• We cover Intel; most of the concepts apply to

ARM

Supplied by CMU.

CS33 Intro to Computer Systems IX–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Data Types on IA32 and x86-64
• “Integer” data of 1, 2, or 4 bytes (plus 8 bytes on x86-

64)
– data values

» whether signed or unsigned depends on interpretation
– addresses (untyped pointers)

• Floating-point data of 4, 8, or 10 bytes

• No aggregate types such as arrays or structures
– just contiguously allocated bytes in memory

Most instructions come in three (on IA32) or four (on x86-64) forms, one for each
possible operand size.

Note the confusion: long on x86 is 32 bits, but long in C is 64 bits.

Note that some assemblers (in particular, those of Microsoft and Intel) use a different
syntax. Rather than tag the mnemonic for the instruction with the operand size, they tag
the operands.

CS33 Intro to Computer Systems IX–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Operand Size

byte

short

long

quad
• Rather than mov ...

– movb
– movs
– movl
– movq (x86-64 only)

Supplied by CMU.

CS33 Intro to Computer Systems IX–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

General-Purpose Registers (IA32)

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers
(backwards compatibility)

ge
ne

ra
l p

ur
po

se

accumulate

counter

data

base

source
index

destination
index

stack
pointer
base
pointer

Origin
(mostly obsolete)

Supplied by CMU.

Note that %ebp/%rbp may be used as a base register as on IA32, but they don’t have to
be used that way. This will become clearer when we explore how the runtime stack is
accessed. The convention on Linux is for the first 6 arguments of a function to be in
registers %rdi, %rsi, %rdx, %rcx, %r8, and %r9. The return value of a function is put in
%rax.

Note also that each register, in addition to having a 32-bit version, also has an 8-bit
(one-byte) version. For the numbered registers, it’s, for example, %r10b. For the other
registers it’s the same as for IA32.

CS33 Intro to Computer Systems IX–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

%rsp

x86-64 General-Purpose Registers

– Extend existing registers to 64 bits. Add 8 new ones.

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

a1

a2

a3

a4

a5
a6

Based on a slide supplied by CMU.

Some assemblers (in particular, those of Intel and Microsoft) place the operands in the
opposite order. Thus, the example of the slide would be “addl %rax,8(%rbp)”. The order
we use is that used by gcc, known as the “AT&T syntax” because it was used in the
original Unix assemblers, written at Bell Labs, then part of AT&T.

CS33 Intro to Computer Systems IX–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Moving Data
• Moving data

movq source, dest

• Operand types
– Immediate: constant integer data

» example: $0x400, $-533
» like C constant, but prefixed with ‘$’
» encoded with 1, 2, 4, or 8 bytes

– Register: one of 16 64-bit registers
» example: %rax, %rdx
» %rsp and %rbp have some special uses
» others have special uses for particular instructions

– Memory: 8 consecutive bytes of memory at address given by
register(s)
» simplest example: (%rax)
» various other “address modes”

%rax
%rcx
%rdx
%rbx
%rsi
%rdi
%rsp
%rbp

%r8
%r9
%r10
%r11
%r12
%r13
%r14
%r15

Supplied by CMU.

CS33 Intro to Computer Systems IX–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

movq Operand Combinations

Cannot (normally) do memory-memory transfer with a single
instruction

movq

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Dest C Analog

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

movq %rax,%rdx temp2 = temp1;

movq %rax,(%rdx) *p = temp;

movq (%rax),%rdx temp = *p;

Src, Dest

Supplied by CMU.

If one thinks of there being an array of registers, then “Reg[R]” selects register “R” from
this array.

CS33 Intro to Computer Systems IX–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Simple Memory Addressing Modes

• Normal (R) Mem[Reg[R]]
– register R specifies memory address

movq (%rcx),%rax

• Displacement D(R) Mem[Reg[R]+D]
– register R specifies start of memory region
–constant displacement D specifies offset

movq 8(%rbp),%rdx

Here we have a simple function that swaps the two components of a structure that's
passed to it. (Assume that %rdi contains the argument.)

CS33 Intro to Computer Systems IX–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Using Simple Addressing Modes

struct xy {
long x;
long y;

}
void swapxy(struct xy *p){
long temp = p->x;
p->x = p->y;
p->y = temp;

}

swap:
movq (%rdi), %rax
movq 8(%rdi), %rdx
movq %rdx, (%rdi)
movq %rax, 8(%rdi)
ret

In addition to using %rdi to contain the argument (the address of the structure), we use
%rax to contain the value of temp and %rdx to effectively be another temporary that
holds the value of p->y.

CS33 Intro to Computer Systems IX–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy
struct xy {
long x;
long y;

}
void swapxy(struct xy *p){
long temp = p->x;
p->x = p->y;
p->y = temp;

}

Layout of
struct xy

Register Value
%rdi p
%rax temp
%rdx p->y

y

x p0

8

Offset

movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

When we enter swapxy, %rdi contains the address of the structure.

CS33 Intro to Computer Systems IX–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 123

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

We copy the first component of p into temp, which is held in %rax.

CS33 Intro to Computer Systems IX–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 123

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

We then copy the second component into %rdx.

CS33 Intro to Computer Systems IX–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 123

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

456
movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

The second component, which we'd copied into %rdx, is now copied into the the first
component of the structure itself.

CS33 Intro to Computer Systems IX–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 456

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

456
movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

Finally, we update the second component, copying into it what had been the first
component.

CS33 Intro to Computer Systems IX–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

123

%rdi 456

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

456
movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems IX–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 3

%rbp 0
-8

-16

8

x
y

movq -8(%rbp), %rax
movq (%rax), %rax
movq (%rax), %rax
movq %rax, -16(%rbp)

// a
long x;
long y;
y = x;

// b
long *x;
long y;
y = *x;

// c
long **x;
long y;
y = **x;

// d
long ***x;
long y;
y = ***x;

Which C statements best describe the
assembler code?

Adapted from a slide supplied by CMU.

The instruction pointer is referred to as %rip. We'll see its use (in addressing) a bit later
in the course.

CS33 Intro to Computer Systems IX–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Complete Memory-Addressing Modes
• Most general form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+D]
– D: constant “displacement”
– Rb: base register: any of 16† registers
– Ri: index register: any, except for %rsp
– S: scale: 1, 2, 4, or 8

• Special cases
(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]
D Mem[D]

†The instruction pointer may also be used (for a total of 17 registers)

Adapted from a slide from CMU

CS33 Intro to Computer Systems IX–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Address-Computation Examples

%rdx 0xf000

%rcx 0x0100

Expression Address Computation Address

0x8(%rdx) 0xf000 + 0x8 0xf008

(%rdx, %rcx) 0xf000 + 0x100 0xf100

(%rdx, %rcx, 4) 0xf000 + 4*0x0100 0xf400

0x80(,%rdx, 2) 2*0xf000 + 0x80 0x1e080

Adapted from a slide supplied by CMU.

Note that a function returns a value by putting it in %rax.

CS33 Intro to Computer Systems IX–44 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Address-Computation Instruction
• leaq src, dest

– src is address mode expression
– set dest to address denoted by expression

• Uses
– computing addresses without a memory reference
» e.g., translation of p = &x[i];

– computing arithmetic expressions of the form x + k*y
» k = 1, 2, 4, or 8

• Example
long mul12(long x)
{
return x*12;

}

x is in %rdi
leaq (%rdi,%rdi,2), %rax # t <- x+x*2
shlq $2, %rax # return t<<2

Converted to ASM by compiler:

On x86-64, for instructions with 32-bit (long) operands that produce 32-bit results going
into a register, the register must be a 32-bit register; the higher-order 32 bits are filled
with zeroes.

CS33 Intro to Computer Systems IX–45 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

32-bit Operands on x86-64

• addl 4(%rdx), %eax
– memory address must be 64 bits
– operands (in this case) are 32-bit

» result goes into %eax
• lower half of %rax
• upper half is filled with zeroes

CS33 Intro to Computer Systems IX–46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 4

What value ends up in %ecx?

movq $1000,%rax
movq $1,%rbx
movl 2(%rax,%rbx,2),%ecx

a) 0x04050607
b) 0x07060504
c) 0x06070809
d) 0x09080706

0x07
0x06
0x05
0x04
0x03
0x02
0x01
0x001000:

1001:
1002:
1003:
1004:
1005:
1006:
1007:

0x09
0x081008:

1009:

Hint:

%rax

Here we have a simple function that swaps the two components of a structure that's
passed to it. (Assume that %rdi contains the argument.) Note that even though we use
the "e" form of the registers to hold the (32-bit) data, we need the "r" form to hold the 64-
bit addresses.

CS33 Intro to Computer Systems IX–47 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Swapxy for Ints

struct xy {
int x;
int y;

}
void swapxy(struct xy *p){
int temp = p->x;
p->x = p->y;
p->y = temp;

}

swap:
movl (%rdi), %eax
movl 4(%rdi), %edx
movl %edx, (%rdi)
movl %eax, 4(%rdi)
ret

• Pointers are 64 bits
• What they point to are 32 bits

Note that using single-byte versions of registers has a different behavior from using 4-
byte versions of registers. Putting data into the latter using mov causes the upper bytes
to be zeroed. But with the byte versions, putting data into them does not affect the
upper bytes.

CS33 Intro to Computer Systems IX–48 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Bytes

• Each register has a byte version
– e.g., %r10: %r10b; see earlier slide for x86 registers

• Needed for byte instructions
– movb (%rax, %rsi), %r10b
– sets only the low byte in %r10

» other seven bytes are unchanged

• Alternatives
– movzbq (%rax, %rsi), %r10

» copies byte to low byte of %r10
» zeroes go to higher bytes

– movsbq (%rax, %rsi), %r10
» copies byte to low byte of %r10
» sign is extended to all higher bits

Supplied by CMU.

Note that normally one does not ask gcc to produce assembler code, but instead it
compiles C code directly into machine code (producing an object file). Note also that the
gcc command actually invokes a script; the compiler (also known as gcc) compiles code
into either assembler code or machine code; if necessary, the assembler (as) assembles
assembler code into object code. The linker (ld) links together multiple object files
(containing object code) into an executable program.

CS33 Intro to Computer Systems IX–49 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

text

text

binary

binary

Compiler (gcc -S)

Assembler (as)

Linker (ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
– Code in files p1.c p2.c
– Compile with command: gcc –O1 p1.c p2.c -o p
»use basic optimizations (-O1)
»put resulting binary in file p

CS33 Intro to Computer Systems IX–50 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Example

long ASum(long *a, unsigned long size) {
long i, sum = 0;

for (i=0; i<size; i++)
sum += a[i];

return sum;
}

Adapted from a slide supplied by CMU.

CS33 Intro to Computer Systems IX–51 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Code for ASum
0x112b <ASum>:

0x48
0x85
0xf6
0x74
0x19
0x48
0x89
0xfa
0x48
0x8d
0x0c
0xf7
.
.
.

Object Code

• Assembler
– translates .s into .o
– binary encoding of each instruction
– nearly-complete image of executable

code
– missing linkages between code in

different files
• Linker

– resolves references between files
– combines with static run-time

libraries
» e.g., code for printf

– some libraries are dynamically linked
» linking occurs when program begins

execution

• Total of 35 bytes
• Each instruction:

1, 2, or 3 bytes
• Starts at address
0x112b

This is taken from Intel 64 and IA-32 Architecture Software Developer’s Manual, Volume
2: Instruction Set Reference; Order Number 325462-043US, Intel Corporation, May
2012 (https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-
sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4)

The point of the slide is that the instruction format is complicated, too much so for a
human to deal with. Which is why we talk about disassemblers in the next slides.

CS33 Intro to Computer Systems IX–52 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Instruction Format

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4

Adapted from a slide supplied by CMU.

objdump's rendition is approximate because it assumes everything in the file is
assembly code, and thus translates data into (often really weird) assembly code.

CS33 Intro to Computer Systems IX–53 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disassembled
Disassembling Object Code

• Disassembler
objdump -d <file>
– useful tool for examining object code
– produces approximate rendition of assembly code

000000000000112b <ASum>:
112b: 48 85 f6 test %rsi,%rsi
112e: 74 19 je 1149 <ASum+0x1e>
1130: 48 89 fa mov %rdi,%rdx
1133: 48 8d 0c f7 lea (%rdi,%rsi,8),%rcx
1137: b8 00 00 00 00 mov $0x0,%eax
113c: 48 03 02 add (%rdx),%rax
113f: 48 83 c2 08 add $0x8,%rdx
1143: 48 39 ca cmp %rcx,%rdx
1146: 75 f4 jne 113c <ASum+0x11>
1148: c3 retq
1149: b8 00 00 00 00 mov $0x0,%eax
114e: c3 retq

Adapted from a slide supplied by CMU.

The "x/35xb" directive to gdb says to examine (first x, meaning print) 35 bytes (b) viewed
as hexadecimal (second x) starting at ASum.

CS33 Intro to Computer Systems IX–54 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disassembled

Dump of assembler code for function ASum:
0x112b <+0>: test %rsi,%rsi
0x112e <+3>: je 0x1149 <ASum+30>
0x1130 <+5>: mov %rdi,%rdx
0x1133 <+8>: lea (%rdi,%rsi,8),%rcx
0x1137 <+12>: mov $0x0,%eax
...

Alternate Disassembly

• Within gdb debugger
gdb <file>
disassemble ASum
– disassemble the ASum object code
x/35xb ASum
– examine the 35 bytes starting at ASum

Object
0x112b:

0x48
0x85
0xf6
0x74
0x19
0x48
0x89
0xfa
0x48
0x8d
0x0c
0xf7
.
.
.

The source for this is http://en.wikipedia.org/wiki/X86_instruction_listings, viewed on
6/20/2017, which came with the caveat that it may be out of date. While it's likely that
more instructions have been added since then, we won't be covering them in 33!

CS33 Intro to Computer Systems IX–55 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

How Many Instructions are There?
• We cover ~30
• Implemented by Intel:

– 80 in original 8086
architecture

– 7 added with 80186
– 17 added with 80286
– 33 added with 386
– 6 added with 486
– 6 added with Pentium
– 1 added with Pentium MMX
– 4 added with Pentium Pro
– 8 added with SSE
– 8 added with SSE2
– 2 added with SSE3
– 14 added with x86-64
– 10 added with VT-x
– 2 added with SSE4a

• Total: 198
• Doesn’t count:

– floating-point instructions
» ~100

– SIMD instructions
» lots

– AMD-added instructions
– undocumented instructions

Supplied by CMU.

Note that for shift instructions, the Src operand (which is the size of the shift) must
either be an immediate operand or be a designator for a one-byte register (e.g., %cl – see
the slide on general-purpose registers for IA32).

Also note that what's given in the slide are the versions for 32-bit operands. There are
also versions for 8-, 16-, and 64-bit operands, with the "l" replaced with the appropriate
letter ("b", "s", or "q").

CS33 Intro to Computer Systems IX–56 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Some Arithmetic Operations

• Two-operand instructions:
Format Computation
addl Src,Dest Dest = Dest + Src
subl Src,Dest Dest = Dest - Src
imull Src,Dest Dest = Dest * Src
shll Src,Dest Dest = Dest << Src Also called sall
sarl Src,Dest Dest = Dest >> Src Arithmetic
shrl Src,Dest Dest = Dest >> Src Logical
xorl Src,Dest Dest = Dest ^ Src
andl Src,Dest Dest = Dest & Src
orl Src,Dest Dest = Dest | Src

– watch out for argument order!

Adapted from a slide supplied by CMU.

CS33 Intro to Computer Systems IX–57 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Some Arithmetic Operations

• One-operand Instructions
incl Dest = Dest + 1
decl Dest = Dest - 1
negl Dest = - Dest
notl Dest = ~Dest

• See textbook for more instructions

• See Intel documentation for even more

Supplied by CMU, but converted to x86-64.

CS33 Intro to Computer Systems IX–58 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Arithmetic Expression Example

int arith(int x, int y, int z)
{
int t1 = x+y;
int t2 = z+t1;
int t3 = x+4;
int t4 = y * 48;
int t5 = t3 + t4;
int rval = t2 * t5;
return rval;

}

arith:
leal (%rdi,%rsi), %eax
addl %edx, %eax
leal (%rsi,%rsi,2), %edx
shll $4, %edx
leal 4(%rdi,%rdx), %ecx
imull %ecx, %eax
ret

Supplied by CMU, but converted to x86-64.

CS33 Intro to Computer Systems IX–59 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding arith

leal (%rdi,%rsi), %eax
addl %edx, %eax
leal (%rsi,%rsi,2), %edx
shll $4, %edx
leal 4(%rdi,%rdx), %ecx
imull %ecx, %eax
ret

int arith(int x, int y, int z)
{
int t1 = x+y;
int t2 = z+t1;
int t3 = x+4;
int t4 = y * 48;
int t5 = t3 + t4;
int rval = t2 * t5;
return rval;

}

%rsi

%rdi

y

x

%rdx z

Supplied by CMU, but converted to x86-64.

By convention, the first three arguments to a function are placed in registers rdi, rsi,
and rdx, respectively. Note that, also by convention, functions put their return values in
register eax/rax.

CS33 Intro to Computer Systems IX–60 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding arith
int arith(int x, int y, int z)
{
int t1 = x+y;
int t2 = z+t1;
int t3 = x+4;
int t4 = y * 48;
int t5 = t3 + t4;
int rval = t2 * t5;
return rval;

}

leal (%rdi,%rsi), %eax # eax = x+y (t1)
addl %edx, %eax # eax = t1+z (t2)
leal (%rsi,%rsi,2), %edx # edx = 3*y (t4)
shll $4, %edx # edx = t4*16 (t4)
leal 4(%rdi,%rdx), %ecx # ecx = x+4+t4 (t5)
imull %ecx, %eax # eax *= t5 (rval)
ret

%rsi

%rdi

y

x

%rdx z

Supplied by CMU, but converted to x86-64.

CS33 Intro to Computer Systems IX–61 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Observations about arith
int arith(int x, int y, int z)
{
int t1 = x+y;
int t2 = z+t1;
int t3 = x+4;
int t4 = y * 48;
int t5 = t3 + t4;
int rval = t2 * t5;
return rval;

}

leal (%rdi,%rsi), %eax # eax = x+y (t1)
addl %edx, %eax # eax = t1+z (t2)
leal (%rsi,%rsi,2), %edx # edx = 3*y (t4)
shll $4, %edx # edx = t4*16 (t4)
leal 4(%rdi,%rdx), %ecx # ecx = x+4+t4 (t5)
imull %ecx, %eax # eax *= t5 (rval)
ret

• Instructions in different order
from C code

• Some expressions might
require multiple instructions

• Some instructions might cover
multiple expressions

Supplied by CMU, but converted to x86-64.

CS33 Intro to Computer Systems IX–62 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Another Example

int logical(int x, int y)
{
int t1 = x^y;
int t2 = t1 >> 17;
int mask = (1<<13) - 7;
int rval = t2 & mask;
return rval;

}

xorl %esi, %edi # edi = x^y (t1)
sarl $17, %edi # edi = t1>>17 (t2)
movl %edi, %eax # eax = edi
andl $8185, %eax # eax = t2 & mask (rval)

213 = 8192, 213 – 7 = 8185

Note that xor'ing anything with itself results in 0.

CS33 Intro to Computer Systems IX–63 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 5

• What is the final value in %ecx?

xorl %ecx, %ecx
incl %ecx
shll %cl, %ecx # %cl is the low byte of %ecx

addl %ecx, %ecx

a) 0
b) 2
c) 4
d) 8

