CS 33

Intro to Machine Programming

CS33 Intro to Computer Systems IX-1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Machine Model

-

_

Processor
(aka CPU)

~

<€

instructions

and data

Memory
(aka RAM)

/

data

CS33 Intro to Computer Systems

IX-2

Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Memory
4 B 4 N

Instructions

Instructions
are Data

— or
Data

N / _ /

CS33 Intro to Computer Systems IX-3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Processor: Some Details

-

Execution
engine

~

Instruction pointer

Condition codes

"

/

CS33 Intro to Computer Systems IX-4

Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Processor: Basic Operation

4 N

while (forever) {
fetch instruction IP points at
decode instruction
fetch operands
execute
store results
update IP and condition code

" /

CS33 Intro to Computer Systems IX=5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Instructions ...

Op code

Operand1

Operand2

CS33 Intro to Computer Systems

IX-6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Operands

 Form

— immediate vs. reference
» value vs. address

 How many?
-3
» add a,b,c
c=a+b
— 2
» add a,b
*b+=a

CS33 Intro to Computer Systems IX-7

Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Operands (continued)

« Accumulator

— special memory in the processor

» known as a register
» fast access

— allows single-operand instructions

» add a
e acc +=a
» add b
cacc+=b

CS33 Intro to Computer Systems IX—8

Copyright © 2022 Thomas W. Doeppner. All rights reserved.

From C to Assembler ...

a = (b + c) * d; i1f (a<b)
c = 1;
mov b, $acc else
add Cc, sacc d = 1;
mu 1l d, sacc
mov %acc, a - 2. b
Jge . L1 immediate
mowv @, C operand
Jmp L2
L1 immediate
G @ d operand
4
L2

CS33 Intro to Computer Systems IX-9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Condition Codes

+ Set of flags giving status of most recent
operation:
— zero flag
» result was zero
— sign flag
» for signed arithmetic interpretation: sign bit is set
— overflow flag
» for signed arithmetic interpretation

— carry flag (generated by carry or borrow out of most-
significant bit)
» for unsigned arithmetic interpretation

« Set implicitly by arithmetic instructions

« Set explicitly by compare instruction
— cmp a,b
» sets flags based on result of b-a

CS33 Intro to Computer Systems IX-10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Examples (1)

« Assume 32-bit arithmetic

* X Iis 0x80000000

— TMIN if interpreted as two’s-complement
— 231 if interpreted as unsigned

o+ x-1 (0x7££EEEEE)

— TMAX if interpreted as two’s-complement
— 2311 if interpreted as unsigned

— zero flag is not set

— sign flag is not set

— overflow flag is set

— carry flag is not set

CS33 Intro to Computer Systems IX-11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Examples (2)

* XIS Oxffffffff

— -1 if interpreted as two’s-complement
— UMAX (232-1) if interpreted as unsigned

* x+1 (0x00000000)

— zero under either interpretation
— zero flag is set

— sign flag is not set

— overflow flag is not set

— carry flag is set

CS33 Intro to Computer Systems IX-12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Examples (3)

* XIS Oxffffffff

— -1 if interpreted as two’s-complement
— UMAX (232-1) if interpreted as unsigned

+ x+2 (0x00000001)

— (+)1 under either interpretation
— zero flag is not set

— sign flag is not set

— overflow flag is not set

— carry flag is set

CS33 Intro to Computer Systems IX-13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

« Set of flags giving status of most
recent operation:

— zero flag
» result was zero

— sign flag a) overflow flag only
» for signed arithmetic interpretation: sign b) carry f|ag only
bit is set .
c) sign and carry

Which flags are set to
one by “cmp 2,1”?

— overflow flag

» for signed arithmetic interpretation flags only
— carry flag (generated by carry or borrow d) sign and overflow
out of most-significant bit) flags only

» for unsigned arithmetic interpretation

« Set explicitly by compare
instruction

e) sign, overflow, and
carry flags

—cmp a,b
» sets flags based on result of b-a

CS33 Intro to Computer Systems IX-14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Jump Instructions

* Unconditional jump
— just do it
« Conditional jump
— to jJump or not to jump determined by condition-
code flags
— field in the op code indicates how this is computed
— in assembler language, simply say
» je
* jump on equal
» jne
* jump on not equal
» jg
« jump on greater than (signed)
» etc.

CS33 Intro to Computer Systems IX-15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Addresses

int a, b, ¢, d;

int main ()

{

*

a = (b + c)
mov b, $acc mowv
add Cc, sacc add
mu 1l d, sacc mu 1l
mov gacc, a mowv

1004, sacc
1008, sacc
1012, 3acc
sacc, 1000

1012: | d
1008: | C
1004: | b giobal

1000: |a Vvariables

Memory

CS33 Intro to Computer Systems

IX-16

Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Addresses

int b;

int func(int c, int d) {
int 3;
a = (b + c) * d;

.. * One copy of b for duration of

) program’s execution

« b’s address is the same
for each call to func

2D S . .
MO A « Different copies of a, ¢, and d
add ?, %acc for each call to func
mul ?,%acc « addresses are different in
each call
mov gsacc, ?

CS33 Intro to Computer Systems IX-17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Relative Addresses

 Absolute address

— actual location in
memory

 Relative address

— offset from some
other location

CS33 Intro to Computer Systems

100

264.1
Blob’s absolute Blob
address is 10000
Datum’s relative Datum
address (to Blob) | 10000
is 100
— its absolute
address is
10100 T
0
Memory
IX-18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Base Registers —y

mov $10000, S%base
mov $10, 100 (%base)

Blob
Datum 100
10000 >
base register
1000
0
Memory

CS33 Intro to Computer Systems IX-19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Addresses

int b;

int func (int ¢, int d) {
int a;
a = (b + c) * d;

mowv 1000, 3acc

add -8 (%base) , 3acc

mu Ll -12 ($base), $Sacc
mowv gacc,—-16 (Sbase)

base —»

n.

d frame

iy

1000:

Memory

CS33 Intro to Computer Systems IX=20

Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

Suppose the value in base is
10,000. What is the address of

n.

c? base —»

a) 10,008 —

b) 10,004 a

c) 9996 *

1000: | b

mowv 1000, 3acc
add -8 (%base) , 3acc
mu Ll -12 ($base), $Sacc
mowv gacc,—-16 (Sbase) Memory

CS33 Intro to Computer Systems IX-21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Registers

e

Execution
engine

Instruction pointer

Accumulator

Base register - interchangeable

more

—

\ Condition codes /

CS33 Intro to Computer Systems IX-22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Registers vs. Memory

~

-~

Execution

engine

instructions

Instruction pointer B and data
Accumulator Memory
; (aka RAM)
Base register >
data
more k
\ Condition codes /
| J
|
a relatively long
distance

CS33 Intro to Computer Systems IX=23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Intel x86

* Intel created the 8008 (in 1972)
« 8008 begat 8080

« 8080 begat 8086

« 8086 begat 8088

« 8086 begat 286

« 286 begat 386 N
« 386 begat 486

* 486 begat Pentium

* Pentium begat Pentium Pro

* Pentium Pro begat Pentium Il
 ad infinitum

— 1A32

—

CS33 Intro to Computer Systems IX-24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

264

« 232 ysed to be considered a large number

— one couldn’t afford 232 bytes of memory, so no
problem with that as an upper bound

* Intel (and others) saw need for machines with
64-bit addresses

— devised 1A64 architecture with HP
» became known as ltanium
» very different from x86

« AMD also saw such a need
— developed 64-bit extension to x86, called x86-64

* [tanium flopped
* x86-64 dominated
* Intel, reluctantly, adopted x86-64

CS33 Intro to Computer Systems IX-25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Why Intel?

 Most CS Department machines are Intel

* An increasing number of personal machines
are not
— Apple has switched to ARM

— packaged into their M1, M2, etc. chips
» “Apple Silicon”

* Intel x86-64 is very different from ARM64 —
internally

 Programming concepts are similar

 We cover Intel; most of the concepts apply to
ARM

CS33 Intro to Computer Systems IX-26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Data Types on IA32 and x86-64

* “Integer” data of 1, 2, or 4 bytes (plus 8 bytes on x86-
64)

— data values
» whether signed or unsigned depends on interpretation
— addresses (untyped pointers)

* Floating-point data of 4, 8, or 10 bytes

* No aggregate types such as arrays or structures
— just contiguously allocated bytes in memory

CS33 Intro to Computer Systems IX-27

Operand Size

|
byte
\ J
|
short
\ J
|
long
\
|
quad
« Rather than mov ...
— movb
— movs
— movl

— movq (x86-64 only)

CS33 Intro to Computer Systems IX-28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

General-Purpose Registers (I1A32) Origin

—
$eax Sax %ah %al
secx sex $ch scl
2
S
= sedx $dx %dh $dl
o <
©
o $ebx sbx $bh sbl
o
uo []
$esi 2si
Sedi sdi
-
o o stack
°eSp °SP pointer
base
o b
oebp . pointer
\)
Y

16-bit virtual registers
(backwards compatibility)

CS33 Intro to Computer Systems IX=29

ad
a3
a2

al

x86-64 General-Purpose Registers

¢rax %eax &$r8 $r8d

Srbx $ebx %r9 $rod

Ircx $ecx 3rl0 %rl0d
Srdx %edx $rll $rlld
Srsi %esi $rl2 $rlad
srdi $edi %rl3 %rl3d
$rsp %esp $rld $rldd
srbp sebp 3rl5 $rl5d

— Extend existing registers to 64 bits. Add 8 new ones.

as
a6

CS33 Intro to Computer Systems

IX-30

Moving Data $rax 5r8
« Moving data srex srd
movq source, dest srdx %rlo0
o Operand types $rbx srll
— Immediate: constant integer data srsi $rl2
» example: $0x400, $-533 o rdi 2r13
» like C constant, but prefixed with *$’
(o] (o]
» encoded with 1, 2, 4, or 8 bytes Srsp srld
— Register: one of 16 64-bit registers %rbp $rlb5

» example: $rax, %rdx
» $rsp and $rbp have some special uses

» others have special uses for particular instructions

— Memory: 8 consecutive bytes of memory at address given by
register(s)
» simplest example: (%rax)

» various other “address modes”

CS33 Intro to Computer Systems IX=31

movqg Operand Combinations

Source Dest Src, Dest C Analog
(Reg movq $0x4,%rax temp = 0x4;
Imm
Mem movg $-147, (%$rax) *p = -147;

movqg %rax, $rdx temp2 = templ;
movq < Reg Reg q P P

Mem movqg %rax, (%$rdx) *p = temp;

N Mem Reg movqg (%rax),%rdx temp = *p;

Cannot (normally) do memory-memory transfer with a single
instruction

CS33 Intro to Computer Systems IX-32

Simple Memory Addressing Modes
 Normal (R) Mem[Reg[R]]
—register R specifies memory address
movq (%rcx) ,srax
* Displacement D(R) Mem[Reg[R]+D]

—register R specifies start of memory region
—constant displacement D specifies offset

movqg 8 (%$rbp) , $rdx

CS33 Intro to Computer Systems IX-33

Using Simple Addressing Modes

swap:

struct xy { movqg (%rdi), S%rax
long x; movqg 8 (%rdi), %rdx
long vy’

movqg %rdx, (%rdi)
movq %rax, 8 (%rdi)
ret

}

void swapxy (struct xy *p) {
long temp = p->x;
p—>X = p-—>y;
p->y = temp;

CS33 Intro to Computer Systems IX-34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

struct xy {
long x;
long vy’

}

void swapxy (struct xy *p) { Layout of
long temp = p->x; Offset
T struct xy
p->y = temp; 8 Y

} 0 X — p
Register Value movqg (%rdi), %$rax # temp = p->x
srdi P movqg 8 (%rdi), %$rdx # %rdx = p->y
Srax temp movqg %rdx, (%rdi) # p—>x = %$rdx
e rdx p->y movqg %$rax, 8 (%rdi) # p—>y = temp

ret

CS33 Intro to Computer Systems IX-35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

Address
el 0x108
$rdi| 0x100 $rdi —*| 123 0x100
Frax
srdx
movq (%rdi), %$rax # temp = p->x
movq 8 (%rdi), %rdx # Srdx = p->y
movqg %rdx, (%rdi) # p—>x = %$rdx
movqg %$rax, 8 (%rdi) # p—>y = temp
ret

CS33 Intro to Computer Systems IX-36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

Address
el 0x108
$rdi| 0x100 $rdi —>| 123 0x100
$rax 123
srdx
movq (%rdi), %$rax # temp = p->x
movq 8 (%rdi), %rdx # Srdx = p->y
movqg %rdx, (%rdi) # p—>x = %$rdx
movqg %$rax, 8 (%rdi) # p—>y = temp

ret

CS33 Intro to Computer Systems IX-37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

Address
el 0x108
$rdi| 0x100 $rdi —*| 123 0x100
$rax 123
srdx 456
movq (%rdi), %$rax # temp = p->x
movqg 8 (%$rdi), %$rdx # Srdx = p->y
movqg %rdx, (%rdi) # p—>x = %$rdx
movqg %$rax, 8 (%rdi) # p—>y = temp
ret

CS33 Intro to Computer Systems IX-38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

Address
el 0x108
$rdi| 0x100 $rdi —> | 456 0x100
$rax 123
srdx 456
movq (%rdi), %$rax # temp = p->x
movq 8 (%rdi), %rdx # Srdx = p->y
movq %$rdx, (%rdi) # p—>x = %$rdx
movqg %$rax, 8 (%rdi) # p—>y = temp
ret

CS33 Intro to Computer Systems IX-39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

Address
Lo 0x108
$rdi| 0x100 $rdi —> | 456 0x100
$rax 123
srdx 456
movq (%rdi), %$rax # temp = p->x
movq 8 (%rdi), %rdx # Srdx = p->y
movqg %rdx, (%rdi) # p—>x = %$rdx
movq %$rax, 8 (%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems IX-40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

movqg -8 (%rbp), S%Srax

movqg (%$rax), %rax %rbp — 0
movqg (srax), Srax -8
movqg %srax, —16(srbp) 16

Which C statements best describe the
assembler code?

// a // b // c
long x; long *x; long **x;
long v; long y; long y;

y = X; y = *%; y = **x;

// d

long ***x;
long vy;

y — ***X,’

CS33 Intro to Computer Systems IX—41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Complete Memory-Addressing Modes

 Most general form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+D]

— D: constant “displacement”

— Rb: base register: any of 16T registers

— Ri: index register: any, except for $rsp

—S: scale:1,2,4,0r8

« Special cases

(Rb,Ri) Mem]|
D(Rb,Ri) Mem|
(Rb,Ri,S) Mem|
D Mem

[Reg
[Reg
[Reg
D]

Rb)]
Rb)]
Rb)]

+Reg[Ri]]
+Reg[Ri]+D]
+S*Reg[Ri]]

TThe instruction pointer may also be used (for a total of 17 registers)

CS33 Intro to Computer Systems IX-42

Address-Computation Examples

$rdx 0x£f000

$rcx 0x0100

Expression Address Computation | Address
0x8(%rdx) 0xf000 + 0x8 0xf008
(%rdx, %rcx) 0xf000 + 0x100 0xf100
(%rdx, %rcx, 4) |0xf000 + 4*0x0100 0xf400
0x80(,%rdx, 2) 2*0xf000 + 0x80 0x1e080

CS33 Intro to Computer Systems

IX-43

Address-Computation Instruction

e leaq src, dest
— src is address mode expression
— set dest to address denoted by expression

e Uses

— computing addresses without a memory reference
» e.d., translation of p = &x[i];

— computing arithmetic expressions of the form x + k*y
» k=1,2,4,0r8

 Example

Converted to ASM by compiler:
long mull? (long x)

{ # x is in %rdi
return x*12;) i
} leaq (%rdi,%rdi,2), %rax # t <- x+x*2
shlg $2, %rax # return t<<2

CS33 Intro to Computer Systems IX-44

32-bit Operands on x86-64

 addl 4(%rdx), %eax

— memory address must be 64 bits
— operands (in this case) are 32-bit

» result goes into %eax
 lower half of %rax
» upper half is filled with zeroes

CS33 Intro to Computer Systems IX—45

Quiz 4

What value ends up in %ecx?

movqg $1000, $Srax

movqg $1,%$rbx

1009:
1008:
1007:
1006:
1005:
1004:

movl 2 (%rax, %$rbx,2),%ecx

a) 0x04050607
b) 0x07060504
c) 0x06070809
d) 0x09080706

1003:
1002:
1001:
%rax — 1000:

Hint:

0x09

0x08

0x07

0x06

0x05

0x04

0x03

0x02

0x01

0x00

CS33 Intro to Computer Systems

IX—46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Swapxy for Ints

swap:
Stfuct Xy A movl (%rdi), %eax
int x; movl 4 (%rdi), %edx
int vy;

movl %edx, (%rdi)
movl %eax, 4 (%rdi)
ret

}

void swapxy (struct xy *p) {
int temp = p->x;
p—>X = p-—>y;
p->y = temp;

}

* Pointers are 64 bits
 What they point to are 32 bits

CS33 Intro to Computer Systems IX—-47 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Bytes

« Each register has a byte version
— e.g., %r10: %r10b; see earlier slide for x86 registers

* Needed for byte instructions
— movb (%rax, %rsi), %r10b

— sets only the low byte in %r10
» other seven bytes are unchanged

 Alternatives

— movzbq (%rax, %rsi), %r10
» copies byte to low byte of %r10
» zeroes go to higher bytes
— movsbq (%rax, %rsi), %r10
» copies byte to low byte of %r10
» sign is extended to all higher bits

CS33 Intro to Computer Systems IX—48 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Turning C into Object Code

— Code infiles pl.c p2.c

— Compile with command: gcc -01 pl.c p2.c -o p
» use basic optimizations (-01)
» put resulting binary in file p

text

text

binary

binary

C program (pl.c p2.c)

l Compiler (gcc -S)

Asm program (pl.s p2.s)

\ Assembler (as)

Object program (pl .o p2.0)

\ Linker (1d)

Executable program (p)

Static libraries

(.a)

CS33 Intro to Computer Systems IX-49

Example

long ASum(long *a, unsigned long size) {
long 1, sum = 0O;
for (i=0; i<size; i++)
sum += al[i];

return sum;

CS33 Intro to Computer Systems IX-50 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Object Code

Code for ASum
 Assembler
OX1;228<Asum>: — translates .s into .o
X
0x85 — binary encoding of each instruction
O0xf6 — nearly-complete image of executable
0x74 code
0x19
S — missing linkages between code in
® different files
0x89 _
Oxfa * Linker
gxgg e Total of 35 bytes — resolves references between files
X
0x0c ° Eachinstruction: — combines with static run-time
OxE7 1, 2, or 3 bytes libraries
e Starts at address » e.g., code for printf
0x112b — some libraries are dynamically linked
» linking occurs when program begins
execution

CS33 Intro to Computer Systems IX-51

Instruction Format

Insrtgﬁ%%n Opcode ModR/M SIB Displacement Immediate
Up to four 1 or 2 byte 1 byte 1 byte Address Immediate
prefixes of opcode (if required) (if required) displacement data of
1-byte each of 1,2, or4 1,2, 0or4
(optional) bytes ornone bytes or none

/

65 32 0

N\

7 65

32 0

Reg/

Mod Opcode

R/M

Scale

Index

Base

CS33 Intro to Computer Systems

IX-52

Disassembling Object Code

Disassembled

000000000000112b
112b: 48 85
112e: 74 19
1130: 48 89
1133: 48 8d
1137: b8 00
113c: 48 03
113f: 48 83
1143: 48 39
1146: 75 f4
1148: 3
1149: b8 00
l1l14e: c3

<ASum>:

)

fa
Oc
00
02
c2
ca

00

£7
00 00

08

00 00

test
je
mov
lea
mov
add
add
cmp
jne
retq
mov
retq

$rsi,srsi
1149 <ASum+0xle>
$rdi, $rdx
%$rdi, %rsi,8) ,%rcx
$0x0, %eax
$rdx) ,$rax
$S0x8, $rdx
$rcx, srdx
113c <ASum+0x11>

$0x0, %eax

 Disassembler
objdump -d <file>

— useful tool for examining object code
— produces approximate rendition of assembly code

CS33 Intro to Computer Systems

Alternate Disassembly
Disassembled

Object
0x112b:
0x48 Dump of assembler code for function ASum:
0x85 0x112b <+0>: test %rsi,srsi
0xf6 O0x1l2e <+3>: je 0x1149 <ASum+30>
0x74 0x1130 <+5>: mov $rdi, srdx
0x19 0x1133 <+8>: lea %rdi, %rsi,8),%rcx
0x48 0x1137 <+12>: mov $0x0, %eax
0x89
Oxfa
oxas » Within gdb debugger
0x8d
O0x0c gdb <file>
s disassemble ASum
' — disassemble the ASum object code
x/35xb ASum

— examine the 35 bytes starting at ASum

CS33 Intro to Computer Systems IX-54

How Many Instructions are There?

We cover ~30 .
Implemented by Intel: .

80 in original 8086
architecture

7 added with 80186

17 added with 80286

33 added with 386

6 added with 486

6 added with Pentium

1 added with Pentium MMX
4 added with Pentium Pro
8 added with SSE

8 added with SSE2

2 added with SSE3

14 added with x86-64

10 added with VT-x

2 added with SSE4a

Total: 198

Doesn’t count:
— floating-point instructions
» ~100
— SIMD instructions
» lots
— AMD-added instructions
— undocumented instructions

CS33 Intro to Computer Systems

IX-55

Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Some Arithmetic Operations

 Two-operand instructions:
Computation

Format
addl
subl
imull
shll
sarl
shrl
xorl
andl

orl

Src,Dest
Src,Dest
Src,Dest
Src,Dest
Src,Dest
Src,Dest
Src,Dest
Src,Dest
Src,Dest

Dest = Dest + Src
Dest = Dest — Src
Dest = Dest * Src
Dest = Dest << Src
Dest = Dest >> Src
Dest = Dest >> Src
Dest = Dest A Src
Dest = Dest & Src
Dest = Dest | Src

— watch out for argument order!

Also called sall
Arithmetic

Logical

CS33 Intro to Computer Systems

IX-56

Some Arithmetic Operations

* One-operand Instructions

incl Dest =Dest+1
decl Dest =Dest -1
negl Dest = — Dest
notl Dest = “Dest

 See textbook for more instructions

« See Intel documentation for even more

CS33 Intro to Computer Systems IX-57

Arithmetic Expression Example

int arith(int x,

{

int
int
int
int
int
int

tl

t3
t4
t5

rval = t2 * t5;

= Xtvy;
t2 =
= x+4;

=y * 48;

z+tl;

t3 + t4;

return rval;

int y, int 2z)

arith:
leal (%rdi,%rsi), %eax
addl %edx, %eax
leal (%rsi,%rsi,2), %edx
shll $4, %edx
leal 4 (%rdi,%rdx), %ecx
imull %ecx, %eax
ret

CS33 Intro to Computer Systems

IX-58

Understanding arith

int arith(int x,

{

int
int
int
int
int
int

tl

t2 =

t3
t4
th

= XtVy;
z+tl;

= x+4;

= vy * 48;
= t3 + t4;

rval = t2 * t5;
return rval;

int y, int 2z)

$eax

$ecx

leal %rdi, %rsi),

addl %edx, %eax

leal (%rsi,%rsi,2), %edx
shll $4, %edx

leal 4 (%rdi,%rdx),

imull %ecx, %eax

ret

$rdx

$rsi

$rdi

CS33 Intro to Computer Systems

IX-59

Understanding arith

int arith(int x, int vy, int 2z)

{ $rdx
int tl = x+ty;
int t2 = z+tl; rsi
int t3 = x+4; :
int t4 = y * 48; srdi

int t5 = t3 + t4;
int rval = t2 * t5;
return rval;

leal (%rdi,%rsi), %eax eax = x+y (tl)
addl %edx, %eax eax = tl+z (t2)
leal %$rsi,%$rsi,2), %edx edx = 3*y (t4)

shll $4, %edx

leal 4(%rdi,%rdx), %ecx
imull %ecx, %eax

ret

edx = t4*16 (t4)
ecx = x+4+t4d (th)
eax *= t5 (rval)

3= N

CS33 Intro to Computer Systems IX-60

Observations about arith

int arith(int x, int vy, int 2z) .
{
int tl = x+ty; .
int t2 = z+tl;
int t3 = x+4; .
int t4 = y * 48;
int t5 = t3 + t4;
int rval = t2 * tb5;
return rval;
}
leal (%rdi,%rsi), %eax #
addl %edx, %eax # eax
leal $rsi,%rsi,2), %$edx # edx
shll $4, %edx #
leal 4(%rdi,%rdx), %ecx # ecx
imull %ecx, %eax # eax

ret

eax =

edx =

Instructions in different order
from C code

Some expressions might
require multiple instructions

Some instructions might cover
multiple expressions

x+y (tl)
= tl+z (t2)
= 3*y (t4)
t4*16 (t4)
= x+4+t4 (t5)
*= t5 (rval)

CS33 Intro to Computer Systems

IX-61

Another Example

int logical (int x, int vy)
{
int tl = x%y;
int t2 = tl1 >> 17;
int mask = (1<<13) - 7;
int rval = t2 & mask;
return rval;

213 =8192, 213 -7 = 8185

xorl %esi, %edi # edi = x*y (tl)
sarl $17, %edi # edi = t1>>17 (t2)
movl %$edi, %eax # eax = edi

andl $8185, %eax # eax = t2 & mask (rval)

CS33 Intro to Computer Systems IX—62

Quiz 5

« What is the final value in %ecx?

xorl %ecx, %ecx
incl %ecx
shll %$cl, %ecx # %cl is the low byte of %ecx

addl %ecx, %ecx

a)
b)
c)
d)

o A~ N O

CS33 Intro to Computer Systems IX—63 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

