
CS33 Intro to Computer Systems IX–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Intro to Machine Programming

CS33 Intro to Computer Systems IX–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Machine Model

Processor
(aka CPU)

Memory
(aka RAM)

instructions
and data

data

CS33 Intro to Computer Systems IX–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Memory

Instructions

Data

Instructions
are Dataor

CS33 Intro to Computer Systems IX–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Processor: Some Details

Instruction pointer

Condition codes

Execution
engine

CS33 Intro to Computer Systems IX–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Processor: Basic Operation

while (forever) {
fetch instruction IP points at
decode instruction
fetch operands
execute
store results
update IP and condition code

}

CS33 Intro to Computer Systems IX–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Instructions ...

Op code Operand1 Operand2 ...

CS33 Intro to Computer Systems IX–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Operands

• Form
– immediate vs. reference

» value vs. address

• How many?
– 3

» add a,b,c
• c = a + b

– 2
» add a,b

• b += a

CS33 Intro to Computer Systems IX–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Operands (continued)

• Accumulator
– special memory in the processor

» known as a register
» fast access

– allows single-operand instructions
» add a

• acc += a
» add b

• acc += b

CS33 Intro to Computer Systems IX–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

From C to Assembler ...

a = (b + c) * d;

mov b,%acc

add c,%acc

mul d,%acc

mov %acc,a

if (a<b)

c = 1;

else
d = 1;

cmp a,b

jge .L1

mov $1,c

jmp .L2

.L1

mov $1,d

.L2

immediate
operand

immediate
operand

CS33 Intro to Computer Systems IX–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Condition Codes
• Set of flags giving status of most recent

operation:
– zero flag

» result was zero
– sign flag

» for signed arithmetic interpretation: sign bit is set
– overflow flag

» for signed arithmetic interpretation
– carry flag (generated by carry or borrow out of most-

significant bit)
» for unsigned arithmetic interpretation

• Set implicitly by arithmetic instructions
• Set explicitly by compare instruction

– cmp a,b
» sets flags based on result of b-a

CS33 Intro to Computer Systems IX–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Examples (1)

• Assume 32-bit arithmetic

• x is 0x80000000
– TMIN if interpreted as twoʼs-complement
– 231 if interpreted as unsigned

• x-1 (0x7fffffff)
– TMAX if interpreted as twoʼs-complement
– 231-1 if interpreted as unsigned
– zero flag is not set
– sign flag is not set
– overflow flag is set
– carry flag is not set

CS33 Intro to Computer Systems IX–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Examples (2)

• x is 0xffffffff
– -1 if interpreted as twoʼs-complement
– UMAX (232-1) if interpreted as unsigned

• x+1 (0x00000000)
– zero under either interpretation
– zero flag is set
– sign flag is not set
– overflow flag is not set
– carry flag is set

CS33 Intro to Computer Systems IX–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Examples (3)

• x is 0xffffffff
– -1 if interpreted as twoʼs-complement
– UMAX (232-1) if interpreted as unsigned

• x+2 (0x00000001)
– (+)1 under either interpretation
– zero flag is not set
– sign flag is not set
– overflow flag is not set
– carry flag is set

CS33 Intro to Computer Systems IX–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1
• Set of flags giving status of most

recent operation:
– zero flag

» result was zero
– sign flag

» for signed arithmetic interpretation: sign
bit is set

– overflow flag
» for signed arithmetic interpretation

– carry flag (generated by carry or borrow
out of most-significant bit)
» for unsigned arithmetic interpretation

• Set explicitly by compare
instruction

– cmp a,b
» sets flags based on result of b-a

Which flags are set to
one by “cmp 2,1”?

a) overflow flag only
b) carry flag only
c) sign and carry

flags only
d) sign and overflow

flags only
e) sign, overflow, and

carry flags

CS33 Intro to Computer Systems IX–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Jump Instructions

• Unconditional jump
– just do it

• Conditional jump
– to jump or not to jump determined by condition-

code flags
– field in the op code indicates how this is computed
– in assembler language, simply say

» je
• jump on equal

» jne
• jump on not equal

» jg
• jump on greater than (signed)

» etc.

CS33 Intro to Computer Systems IX–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Addresses

int a, b, c, d;

int main() {

a = (b + c) * d;

...

}

global
variables

d1012:
c1008:
b1004:
a1000:

mov b,%acc
add c,%acc
mul d,%acc
mov %acc,a

mov 1004,%acc
add 1008,%acc
mul 1012,%acc
mov %acc,1000

Memory

CS33 Intro to Computer Systems IX–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Addresses

int b;

int func(int c, int d) {

int a;

a = (b + c) * d;

...

}

mov ?,%acc

add ?,%acc

mul ?,%acc

mov %acc,?

• One copy of b for duration of
program’s execution
• b’s address is the same

for each call to func
• Different copies of a, c, and d

for each call to func
• addresses are different in

each call

CS33 Intro to Computer Systems IX–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Relative Addresses

• Absolute address
– actual location in

memory
• Relative address

– offset from some
other location

Memory
0

1000

264-1

Blob

10000
Datum 100

• Blob’s absolute
address is 10000

• Datum’s relative
address (to Blob)
is 100
– its absolute

address is
10100

CS33 Intro to Computer Systems IX–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Base Registers

mov $10000, %base

mov $10, 100(%base)

Memory
0

1000

264-1

Blob

10000
Datum 100

base register

CS33 Intro to Computer Systems IX–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Addresses

int b;

int func(int c, int d) {

int a;

a = (b + c) * d;

...

}

mov 1000,%acc

add -8(%base),%acc

mul -12(%base),%acc

mov %acc,-16(%base)

global
variables

Memory

earlier stack
frame

previous stack
frame

func stack
frame

b1000:

c
d
a

base ®

CS33 Intro to Computer Systems IX–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

long b;

int func(long c, long d) {

long a;

a = (b + c) * d;

...

}

mov 1000,%acc

add -8(%base),%acc

mul -12(%base),%acc

mov %acc,-16(%base)

global
variables

Memory

earlier stack
frame

previous stack
frame

func stack
frame

b1000:

c
d
a

base ®

Suppose the value in base is
10,000. What is the address of
c?

a) 10,008
b) 10,004
c) 9996
d) 9992

CS33 Intro to Computer Systems IX–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Registers

Instruction pointer

Condition codes

Execution
engine

Accumulator
Base register

more
interchangeable

CS33 Intro to Computer Systems IX–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Registers vs. Memory

Memory
(aka RAM)

instructions
and data

data

Instruction pointer

Condition codes

Execution
engine

Accumulator
Base register

more

a relatively long
distance

CS33 Intro to Computer Systems IX–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Intel x86
• Intel created the 8008 (in 1972)
• 8008 begat 8080
• 8080 begat 8086
• 8086 begat 8088
• 8086 begat 286
• 286 begat 386
• 386 begat 486
• 486 begat Pentium
• Pentium begat Pentium Pro
• Pentium Pro begat Pentium II
• ad infinitum

IA32

CS33 Intro to Computer Systems IX–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

264
• 232 used to be considered a large number

– one couldn’t afford 232 bytes of memory, so no
problem with that as an upper bound

• Intel (and others) saw need for machines with
64-bit addresses

– devised IA64 architecture with HP
» became known as Itanium
» very different from x86

• AMD also saw such a need
– developed 64-bit extension to x86, called x86-64

• Itanium flopped
• x86-64 dominated
• Intel, reluctantly, adopted x86-64

CS33 Intro to Computer Systems IX–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Why Intel?

• Most CS Department machines are Intel
• An increasing number of personal machines

are not
– Apple has switched to ARM
– packaged into their M1, M2, etc. chips

» “Apple Silicon”

• Intel x86-64 is very different from ARM64 ⏤
internally

• Programming concepts are similar
• We cover Intel; most of the concepts apply to

ARM

CS33 Intro to Computer Systems IX–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Data Types on IA32 and x86-64
• “Integer” data of 1, 2, or 4 bytes (plus 8 bytes on x86-

64)
– data values

» whether signed or unsigned depends on interpretation
– addresses (untyped pointers)

• Floating-point data of 4, 8, or 10 bytes

• No aggregate types such as arrays or structures
– just contiguously allocated bytes in memory

CS33 Intro to Computer Systems IX–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Operand Size

byte

short

long

quad
• Rather than mov ...

– movb
– movs
– movl
– movq (x86-64 only)

CS33 Intro to Computer Systems IX–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

General-Purpose Registers (IA32)

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers
(backwards compatibility)

ge
ne

ra
l p

ur
po

se

accumulate

counter

data

base

source
index

destination
index

stack
pointer

base
pointer

Origin
(mostly obsolete)

CS33 Intro to Computer Systems IX–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

%rsp

x86-64 General-Purpose Registers

– Extend existing registers to 64 bits. Add 8 new ones.

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

a1

a2

a3

a4

a5
a6

CS33 Intro to Computer Systems IX–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Moving Data
• Moving data

movq source, dest

• Operand types
– Immediate: constant integer data

» example: $0x400, $-533
» like C constant, but prefixed with ‘$’
» encoded with 1, 2, 4, or 8 bytes

– Register: one of 16 64-bit registers
» example: %rax, %rdx
» %rsp and %rbp have some special uses
» others have special uses for particular instructions

– Memory: 8 consecutive bytes of memory at address given by
register(s)
» simplest example: (%rax)
» various other “address modes”

%rax
%rcx
%rdx
%rbx
%rsi
%rdi
%rsp
%rbp

%r8
%r9
%r10
%r11
%r12
%r13
%r14
%r15

CS33 Intro to Computer Systems IX–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

movq Operand Combinations

Cannot (normally) do memory-memory transfer with a single
instruction

movq

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Dest C Analog

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

movq %rax,%rdx temp2 = temp1;

movq %rax,(%rdx) *p = temp;

movq (%rax),%rdx temp = *p;

Src, Dest

CS33 Intro to Computer Systems IX–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Simple Memory Addressing Modes

• Normal (R) Mem[Reg[R]]
– register R specifies memory address

movq (%rcx),%rax

• Displacement D(R) Mem[Reg[R]+D]
– register R specifies start of memory region
–constant displacement D specifies offset

movq 8(%rbp),%rdx

CS33 Intro to Computer Systems IX–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Using Simple Addressing Modes

struct xy {
long x;
long y;

}
void swapxy(struct xy *p){

long temp = p->x;
p->x = p->y;
p->y = temp;

}

swap:
movq (%rdi), %rax
movq 8(%rdi), %rdx
movq %rdx, (%rdi)
movq %rax, 8(%rdi)
ret

CS33 Intro to Computer Systems IX–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy
struct xy {

long x;
long y;

}
void swapxy(struct xy *p){

long temp = p->x;
p->x = p->y;
p->y = temp;

}

Layout of
struct xy

Register Value
%rdi p
%rax temp
%rdx p->y

y

x p0

8

Offset

movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems IX–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 123

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems IX–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 123

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems IX–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 123

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

456
movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems IX–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 456

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

456
movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems IX–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

123

%rdi 456

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

456
movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems IX–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 3

%rbp 0

-8

-16

8

x

y

movq -8(%rbp), %rax
movq (%rax), %rax
movq (%rax), %rax
movq %rax, -16(%rbp)

// a
long x;
long y;
y = x;

// b
long *x;
long y;
y = *x;

// c
long **x;
long y;
y = **x;

// d
long ***x;
long y;
y = ***x;

Which C statements best describe the
assembler code?

CS33 Intro to Computer Systems IX–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Complete Memory-Addressing Modes
• Most general form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+D]
– D: constant “displacement”
– Rb: base register: any of 16† registers
– Ri: index register: any, except for %rsp
– S: scale: 1, 2, 4, or 8

• Special cases
(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]
D Mem[D]

†The instruction pointer may also be used (for a total of 17 registers)

CS33 Intro to Computer Systems IX–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Address-Computation Examples

%rdx 0xf000

%rcx 0x0100

Expression Address Computation Address

0x8(%rdx) 0xf000 + 0x8 0xf008

(%rdx, %rcx) 0xf000 + 0x100 0xf100

(%rdx, %rcx, 4) 0xf000 + 4*0x0100 0xf400

0x80(,%rdx, 2) 2*0xf000 + 0x80 0x1e080

CS33 Intro to Computer Systems IX–44 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Address-Computation Instruction
• leaq src, dest

– src is address mode expression
– set dest to address denoted by expression

• Uses
– computing addresses without a memory reference
» e.g., translation of p = &x[i];

– computing arithmetic expressions of the form x + k*y
» k = 1, 2, 4, or 8

• Example
long mul12(long x)
{

return x*12;
}

x is in %rdi
leaq (%rdi,%rdi,2), %rax # t <- x+x*2
shlq $2, %rax # return t<<2

Converted to ASM by compiler:

CS33 Intro to Computer Systems IX–45 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

32-bit Operands on x86-64

• addl 4(%rdx), %eax
– memory address must be 64 bits
– operands (in this case) are 32-bit

» result goes into %eax
• lower half of %rax
• upper half is filled with zeroes

CS33 Intro to Computer Systems IX–46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 4

What value ends up in %ecx?

movq $1000,%rax

movq $1,%rbx

movl 2(%rax,%rbx,2),%ecx

a) 0x04050607
b) 0x07060504
c) 0x06070809
d) 0x09080706

0x07
0x06
0x05
0x04
0x03
0x02
0x01
0x001000:

1001:
1002:
1003:
1004:
1005:
1006:
1007:

0x09
0x081008:

1009:

Hint:

%rax

CS33 Intro to Computer Systems IX–47 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Swapxy for Ints

struct xy {
int x;
int y;

}
void swapxy(struct xy *p){

int temp = p->x;
p->x = p->y;
p->y = temp;

}

swap:
movl (%rdi), %eax
movl 4(%rdi), %edx
movl %edx, (%rdi)
movl %eax, 4(%rdi)
ret

• Pointers are 64 bits
• What they point to are 32 bits

CS33 Intro to Computer Systems IX–48 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Bytes

• Each register has a byte version
– e.g., %r10: %r10b; see earlier slide for x86 registers

• Needed for byte instructions
– movb (%rax, %rsi), %r10b
– sets only the low byte in %r10

» other seven bytes are unchanged

• Alternatives
– movzbq (%rax, %rsi), %r10

» copies byte to low byte of %r10
» zeroes go to higher bytes

– movsbq (%rax, %rsi), %r10
» copies byte to low byte of %r10
» sign is extended to all higher bits

CS33 Intro to Computer Systems IX–49 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

text

text

binary

binary

Compiler (gcc -S)

Assembler (as)

Linker (ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
– Code in files p1.c p2.c
– Compile with command: gcc –O1 p1.c p2.c -o p
»use basic optimizations (-O1)
»put resulting binary in file p

CS33 Intro to Computer Systems IX–50 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Example

long ASum(long *a, unsigned long size) {
long i, sum = 0;
for (i=0; i<size; i++)

sum += a[i];
return sum;

}

CS33 Intro to Computer Systems IX–51 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Code for ASum
0x112b <ASum>:

0x48
0x85
0xf6
0x74
0x19
0x48
0x89
0xfa
0x48
0x8d
0x0c
0xf7
.
.
.

Object Code

• Assembler
– translates .s into .o
– binary encoding of each instruction
– nearly-complete image of executable

code
– missing linkages between code in

different files
• Linker

– resolves references between files
– combines with static run-time

libraries
» e.g., code for printf

– some libraries are dynamically linked
» linking occurs when program begins

execution

• Total of 35 bytes
• Each instruction:

1, 2, or 3 bytes
• Starts at address
0x112b

CS33 Intro to Computer Systems IX–52 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Instruction Format

CS33 Intro to Computer Systems IX–53 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disassembled
Disassembling Object Code

• Disassembler
objdump -d <file>

– useful tool for examining object code
– produces approximate rendition of assembly code

000000000000112b <ASum>:
112b: 48 85 f6 test %rsi,%rsi
112e: 74 19 je 1149 <ASum+0x1e>
1130: 48 89 fa mov %rdi,%rdx
1133: 48 8d 0c f7 lea (%rdi,%rsi,8),%rcx
1137: b8 00 00 00 00 mov $0x0,%eax
113c: 48 03 02 add (%rdx),%rax
113f: 48 83 c2 08 add $0x8,%rdx
1143: 48 39 ca cmp %rcx,%rdx
1146: 75 f4 jne 113c <ASum+0x11>
1148: c3 retq
1149: b8 00 00 00 00 mov $0x0,%eax
114e: c3 retq

CS33 Intro to Computer Systems IX–54 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disassembled

Dump of assembler code for function ASum:
0x112b <+0>: test %rsi,%rsi
0x112e <+3>: je 0x1149 <ASum+30>
0x1130 <+5>: mov %rdi,%rdx
0x1133 <+8>: lea (%rdi,%rsi,8),%rcx
0x1137 <+12>: mov $0x0,%eax

...

Alternate Disassembly

• Within gdb debugger
gdb <file>
disassemble ASum

– disassemble the ASum object code
x/35xb ASum

– examine the 35 bytes starting at ASum

Object
0x112b:

0x48
0x85
0xf6
0x74
0x19
0x48
0x89
0xfa
0x48
0x8d
0x0c
0xf7
.
.
.

CS33 Intro to Computer Systems IX–55 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

How Many Instructions are There?
• We cover ~30
• Implemented by Intel:

– 80 in original 8086
architecture

– 7 added with 80186
– 17 added with 80286
– 33 added with 386
– 6 added with 486
– 6 added with Pentium
– 1 added with Pentium MMX
– 4 added with Pentium Pro
– 8 added with SSE
– 8 added with SSE2
– 2 added with SSE3
– 14 added with x86-64
– 10 added with VT-x
– 2 added with SSE4a

• Total: 198
• Doesn’t count:

– floating-point instructions
» ~100

– SIMD instructions
» lots

– AMD-added instructions
– undocumented instructions

CS33 Intro to Computer Systems IX–56 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Some Arithmetic Operations

• Two-operand instructions:
Format Computation

addl Src,Dest Dest = Dest + Src
subl Src,Dest Dest = Dest - Src
imull Src,Dest Dest = Dest * Src
shll Src,Dest Dest = Dest << Src Also called sall
sarl Src,Dest Dest = Dest >> Src Arithmetic
shrl Src,Dest Dest = Dest >> Src Logical
xorl Src,Dest Dest = Dest ^ Src
andl Src,Dest Dest = Dest & Src
orl Src,Dest Dest = Dest | Src

– watch out for argument order!

CS33 Intro to Computer Systems IX–57 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Some Arithmetic Operations

• One-operand Instructions
incl Dest = Dest + 1
decl Dest = Dest - 1
negl Dest = - Dest
notl Dest = ~Dest

• See textbook for more instructions

• See Intel documentation for even more

CS33 Intro to Computer Systems IX–58 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Arithmetic Expression Example

int arith(int x, int y, int z)
{

int t1 = x+y;
int t2 = z+t1;
int t3 = x+4;
int t4 = y * 48;
int t5 = t3 + t4;
int rval = t2 * t5;
return rval;

}

arith:
leal (%rdi,%rsi), %eax
addl %edx, %eax
leal (%rsi,%rsi,2), %edx
shll $4, %edx
leal 4(%rdi,%rdx), %ecx
imull %ecx, %eax
ret

CS33 Intro to Computer Systems IX–59 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding arith

leal (%rdi,%rsi), %eax
addl %edx, %eax
leal (%rsi,%rsi,2), %edx
shll $4, %edx
leal 4(%rdi,%rdx), %ecx
imull %ecx, %eax
ret

int arith(int x, int y, int z)
{

int t1 = x+y;
int t2 = z+t1;
int t3 = x+4;
int t4 = y * 48;
int t5 = t3 + t4;
int rval = t2 * t5;
return rval;

}

%rsi

%rdi

y

x

%rdx z

CS33 Intro to Computer Systems IX–60 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding arith
int arith(int x, int y, int z)
{

int t1 = x+y;
int t2 = z+t1;
int t3 = x+4;
int t4 = y * 48;
int t5 = t3 + t4;
int rval = t2 * t5;
return rval;

}

leal (%rdi,%rsi), %eax # eax = x+y (t1)
addl %edx, %eax # eax = t1+z (t2)
leal (%rsi,%rsi,2), %edx # edx = 3*y (t4)
shll $4, %edx # edx = t4*16 (t4)
leal 4(%rdi,%rdx), %ecx # ecx = x+4+t4 (t5)
imull %ecx, %eax # eax *= t5 (rval)
ret

%rsi

%rdi

y

x

%rdx z

CS33 Intro to Computer Systems IX–61 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Observations about arith
int arith(int x, int y, int z)
{

int t1 = x+y;
int t2 = z+t1;
int t3 = x+4;
int t4 = y * 48;
int t5 = t3 + t4;
int rval = t2 * t5;
return rval;

}

leal (%rdi,%rsi), %eax # eax = x+y (t1)
addl %edx, %eax # eax = t1+z (t2)
leal (%rsi,%rsi,2), %edx # edx = 3*y (t4)
shll $4, %edx # edx = t4*16 (t4)
leal 4(%rdi,%rdx), %ecx # ecx = x+4+t4 (t5)
imull %ecx, %eax # eax *= t5 (rval)
ret

• Instructions in different order
from C code

• Some expressions might
require multiple instructions

• Some instructions might cover
multiple expressions

CS33 Intro to Computer Systems IX–62 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Another Example

int logical(int x, int y)
{

int t1 = x^y;
int t2 = t1 >> 17;
int mask = (1<<13) - 7;
int rval = t2 & mask;
return rval;

}

xorl %esi, %edi # edi = x^y (t1)
sarl $17, %edi # edi = t1>>17 (t2)
movl %edi, %eax # eax = edi
andl $8185, %eax # eax = t2 & mask (rval)

213 = 8192, 213 – 7 = 8185

CS33 Intro to Computer Systems IX–63 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 5

• What is the final value in %ecx?

xorl %ecx, %ecx

incl %ecx

shll %cl, %ecx # %cl is the low byte of %ecx

addl %ecx, %ecx

a) 0
b) 2
c) 4
d) 8

