
Many of the slides in this lecture are either from or adapted from slides provided by the
authors of the textbook “Computer Systems: A Programmer’s Perspective,” 2nd Edition
and are provided from the website of Carnegie-Mellon University, course 15-213, taught
by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated
“Supplied by CMU” in the notes section of the slides.

CS33 Intro to Computer Systems X–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Machine Programming (2)

Supplied by CMU.

CS33 Intro to Computer Systems X–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Data Types on IA32 and x86-64
• “Integer” data of 1, 2, or 4 bytes (plus 8 bytes on x86-

64)
– data values

» whether signed or unsigned depends on interpretation
– addresses (untyped pointers)

• Floating-point data of 4, 8, or 10 bytes

• No aggregate types such as arrays or structures
– just contiguously allocated bytes in memory

Most instructions come in three (on IA32) or four (on x86-64) forms, one for each
possible operand size.

Note the confusion: long on x86 is 32 bits, but long in C is 64 bits.

Note that some assemblers (in particular, those of Microsoft and Intel) use a different
syntax. Rather than tag the mnemonic for the instruction with the operand size, they tag
the operands.

CS33 Intro to Computer Systems X–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Operand Size

byte

short

long

quad
• Rather than mov ...

– movb
– movs
– movl
– movq (x86-64 only)

Supplied by CMU.

CS33 Intro to Computer Systems X–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

General-Purpose Registers (IA32)

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers
(backwards compatibility)

ge
ne

ra
l p

ur
po

se

accumulate

counter

data

base

source
index

destination
index

stack
pointer
base
pointer

Origin
(mostly obsolete)

Supplied by CMU.

Note that %ebp/%rbp may be used as a base register as on IA32, but they don’t have to
be used that way. This will become clearer when we explore how the runtime stack is
accessed. The convention on Linux is for the first 6 arguments of a function to be in
registers %rdi, %rsi, %rdx, %rcx, %r8, and %r9. The return value of a function is put in
%rax.

Note also that each register, in addition to having a 32-bit version, also has an 8-bit
(one-byte) version. For the numbered registers, it’s, for example, %r10b. For the other
registers it’s the same as for IA32.

CS33 Intro to Computer Systems X–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

%rsp

x86-64 General-Purpose Registers

– Extend existing registers to 64 bits. Add 8 new ones.

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

a1

a2

a3

a4

a5
a6

Based on a slide supplied by CMU.

Some assemblers (in particular, those of Intel and Microsoft) place the operands in the
opposite order. Thus, the example of the slide would be “addl %rax,8(%rbp)”. The order
we use is that used by gcc, known as the “AT&T syntax” because it was used in the
original Unix assemblers, written at Bell Labs, then part of AT&T.

CS33 Intro to Computer Systems X–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Moving Data
• Moving data

movq source, dest

• Operand types
– Immediate: constant integer data

» example: $0x400, $-533
» like C constant, but prefixed with ‘$’
» encoded with 1, 2, 4, or 8 bytes

– Register: one of 16 64-bit registers
» example: %rax, %rdx
» %rsp and %rbp have some special uses
» others have special uses for particular instructions

– Memory: 8 consecutive bytes of memory at address given by
register(s)
» simplest example: (%rax)
» various other “address modes”

%rax
%rcx
%rdx
%rbx
%rsi
%rdi
%rsp
%rbp

%r8
%r9
%r10
%r11
%r12
%r13
%r14
%r15

Supplied by CMU.

CS33 Intro to Computer Systems X–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

movq Operand Combinations

Cannot (normally) do memory-memory transfer with a single
instruction

movq

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Dest C Analog

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

movq %rax,%rdx temp2 = temp1;

movq %rax,(%rdx) *p = temp;

movq (%rax),%rdx temp = *p;

Src, Dest

Supplied by CMU.

If one thinks of there being an array of registers, then “Reg[R]” selects register “R” from
this array.

CS33 Intro to Computer Systems X–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Simple Memory Addressing Modes

• Normal (R) Mem[Reg[R]]
– register R specifies memory address

movq (%rcx),%rax

• Displacement D(R) Mem[Reg[R]+D]
– register R specifies start of memory region
–constant displacement D specifies offset

movq 8(%rbp),%rdx

Here we have a simple function that swaps the two components of a structure that's
passed to it. (Assume that %rdi contains the argument.)

CS33 Intro to Computer Systems X–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Using Simple Addressing Modes

struct xy {
long x;
long y;

}
void swapxy(struct xy *p){
long temp = p->x;
p->x = p->y;
p->y = temp;

}

swap:
movq (%rdi), %rax
movq 8(%rdi), %rdx
movq %rdx, (%rdi)
movq %rax, 8(%rdi)
ret

In addition to using %rdi to contain the argument (the address of the structure), we use
%rax to contain the value of temp and %rdx to effectively be another temporary that
holds the value of p->y.

CS33 Intro to Computer Systems X–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy
struct xy {
long x;
long y;

}
void swapxy(struct xy *p){
long temp = p->x;
p->x = p->y;
p->y = temp;

}

Layout of
struct xy

Register Value
%rdi p
%rax temp
%rdx p->y

y

x p0

8

Offset

movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

When we enter swapxy, %rdi contains the address of the structure.

CS33 Intro to Computer Systems X–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 123

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

We copy the first component of p into temp, which is held in %rax.

CS33 Intro to Computer Systems X–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 123

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

We then copy the second component into %rdx.

CS33 Intro to Computer Systems X–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 123

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

456
movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

The second component, which we'd copied into %rdx, is now copied into the the first
component of the structure itself.

CS33 Intro to Computer Systems X–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

456

%rdi 456

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

456
movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

Finally, we update the second component, copying into it what had been the first
component.

CS33 Intro to Computer Systems X–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding Swapxy

123

%rdi 456

Address

0x108

0x100 %rdi

%rax

%rdx

0x100

123

456
movq (%rdi), %rax # temp = p->x
movq 8(%rdi), %rdx # %rdx = p->y
movq %rdx, (%rdi) # p->x = %rdx
movq %rax, 8(%rdi) # p->y = temp
ret

CS33 Intro to Computer Systems X–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

%rbp 0
-8

-16

8

x
y

movq -8(%rbp), %rax
movq (%rax), %rax
movq (%rax), %rax
movq %rax, -16(%rbp)

// a
long x;
long y;
y = x;

// b
long *x;
long y;
y = *x;

// c
long **x;
long y;
y = **x;

// d
long ***x;
long y;
y = ***x;

Which C statements best describe the
assembler code?

Adapted from a slide supplied by CMU.

The instruction pointer is referred to as %rip. We'll see its use (in addressing) a bit later
in the course.

CS33 Intro to Computer Systems X–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Complete Memory-Addressing Modes
• Most general form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+D]
– D: constant “displacement”
– Rb: base register: any of 16† registers
– Ri: index register: any, except for %rsp
– S: scale: 1, 2, 4, or 8

• Special cases
(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]
D Mem[D]

†The instruction pointer may also be used (for a total of 17 registers)

Adapted from a slide from CMU

CS33 Intro to Computer Systems X–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Address-Computation Examples

%rdx 0xf000

%rcx 0x0100

Expression Address Computation Address

0x8(%rdx) 0xf000 + 0x8 0xf008

(%rdx, %rcx) 0xf000 + 0x100 0xf100

(%rdx, %rcx, 4) 0xf000 + 4*0x0100 0xf400

0x80(,%rdx, 2) 2*0xf000 + 0x80 0x1e080

Adapted from a slide supplied by CMU.

Note that a function returns a value by putting it in %rax.

CS33 Intro to Computer Systems X–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Address-Computation Instruction
• leaq src, dest

– src is address mode expression
– set dest to address denoted by expression

• Uses
– computing addresses without a memory reference
» e.g., translation of p = &x[i];

– computing arithmetic expressions of the form x + k*y
» k = 1, 2, 4, or 8

• Example
long mul12(long x)
{
return x*12;

}

x is in %rdi
leaq (%rdi,%rdi,2), %rax # t <- x+x*2
shlq $2, %rax # return t<<2

Converted to ASM by compiler:

On x86-64, for instructions with 32-bit (long) operands that produce 32-bit results going
into a register, the register must be a 32-bit register; the higher-order 32 bits are filled
with zeroes.

CS33 Intro to Computer Systems X–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

32-bit Operands on x86-64

• addl 4(%rdx), %eax
– memory address must be 64 bits
– operands (in this case) are 32-bit

» result goes into %eax
• lower half of %rax
• upper half is filled with zeroes

CS33 Intro to Computer Systems X–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

What value ends up in %ecx?

movq $1000,%rax
movq $1,%rbx
movl 2(%rax,%rbx,2),%ecx

a) 0x04050607
b) 0x07060504
c) 0x06070809
d) 0x09080706

0x07
0x06
0x05
0x04
0x03
0x02
0x01
0x001000:

1001:
1002:
1003:
1004:
1005:
1006:
1007:

0x09
0x081008:

1009:

Hint:

%rax

Here we have a simple function that swaps the two components of a structure that's
passed to it. (Assume that %rdi contains the argument.) Note that even though we use
the "e" form of the registers to hold the (32-bit) data, we need the "r" form to hold the 64-
bit addresses.

CS33 Intro to Computer Systems X–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Swapxy for Ints

struct xy {
int x;
int y;

}
void swapxy(struct xy *p){
int temp = p->x;
p->x = p->y;
p->y = temp;

}

swap:
movl (%rdi), %eax
movl 4(%rdi), %edx
movl %edx, (%rdi)
movl %eax, 4(%rdi)
ret

• Pointers are 64 bits
• What they point to are 32 bits

Note that using single-byte versions of registers has a different behavior from using 4-
byte versions of registers. Putting data into the latter using mov causes the upper bytes
to be zeroed. But with the byte versions, putting data into them does not affect the
upper bytes.

CS33 Intro to Computer Systems X–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Bytes

• Each register has a byte version
– e.g., %r10: %r10b; see earlier slide for x86 registers

• Needed for byte instructions
– movb (%rax, %rsi), %r10b
– sets only the low byte in %r10

» other seven bytes are unchanged

• Alternatives
– movzbq (%rax, %rsi), %r10

» copies byte to low byte of %r10
» zeroes go to higher bytes

– movsbq (%rax, %rsi), %r10
» copies byte to low byte of %r10
» sign is extended to all higher bits

Supplied by CMU.

Note that normally one does not ask gcc to produce assembler code, but instead it
compiles C code directly into machine code (producing an object file). Note also that the
gcc command actually invokes a script; the compiler (also known as gcc) compiles code
into either assembler code or machine code; if necessary, the assembler (as) assembles
assembler code into object code. The linker (ld) links together multiple object files
(containing object code) into an executable program.

CS33 Intro to Computer Systems X–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

text

text

binary

binary

Compiler (gcc -S)

Assembler (as)

Linker (ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
– Code in files p1.c p2.c
– Compile with command: gcc –O1 p1.c p2.c -o p
»use basic optimizations (-O1)
»put resulting binary in file p

CS33 Intro to Computer Systems X–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Example
long ASum(long *a, unsigned long size) {

long i, sum = 0;

for (i=0; i<size; i++)
sum += a[i];

return sum;
}

Here is the assembler code produced by gcc from the C code of the previous slide.

CS33 Intro to Computer Systems X–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code
ASum:

testq %rsi, %rsi
je .L4
movq %rdi, %rdx
leaq (%rdi,%rsi,8), %rcx
movl $0, %edx

.L3:
addq (%rax), %rdx
addq $8, %rax
cmpq %rcx, %rdx
jne .L3

.L1:

movq %rdx, %rax
ret

.L4:
movl $0, %eax
jmp .L1

Adapted from a slide supplied by CMU.

The lefthand column shows the object code produced by gcc. This was produced either
by assembling the code of the previous slide, or by compiling the C code of the slide
before that.

Suppose that all we have is the object code – we don’t have the assembler code and the
C code. Can we translate for object code to assembler code? (This is known as
disassembling.)

CS33 Intro to Computer Systems X–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Code for ASum
0x112b <ASum>:

0x48
0x85
0xf6
0x74
0x19
0x48
0x89
0xfa
0x48
0x8d
0x0c
0xf7
.
.
.

Object Code

• Assembler
– translates .s into .o
– binary encoding of each instruction
– nearly complete image of executable

code
– missing linkages between code in

different files
• Linker

– resolves references between files
– combines with static run-time

libraries
» e.g., code for printf

– some libraries are dynamically linked
» linking occurs when program begins

execution

• Total of 35 bytes
• Each instruction:

1, 2, or 3 bytes
• Starts at address
0x112b

This is taken from Intel 64 and IA-32 Architecture Software Developer’s Manual, Volume
2: Instruction Set Reference; Order Number 325462-043US, Intel Corporation, May
2012 (https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-
sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4)

The point of the slide is that the instruction format is complicated, too much so for a
human to deal with. Which is why we talk about disassemblers in the next slides.

CS33 Intro to Computer Systems X–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Instruction Format

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4

Adapted from a slide supplied by CMU.

objdump's rendition is approximate because it assumes everything in the file is
assembly code, and thus translates data into (often really weird) assembly code. Also, it
leaves off the suffix at the end of each instruction, assuming it can be determined from
context.

CS33 Intro to Computer Systems X–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disassembled
Disassembling Object Code

• Disassembler
objdump -d <file>
– useful tool for examining object code
– produces approximate rendition of assembly code

000000000000112b <ASum>:
112b: 48 85 f6 test %rsi,%rsi
112e: 74 19 je 1149 <ASum+0x1e>
1130: 48 89 fa mov %rdi,%rdx
1133: 48 8d 0c f7 lea (%rdi,%rsi,8),%rcx
1137: b8 00 00 00 00 mov $0x0,%eax
113c: 48 03 02 add (%rdx),%rax
113f: 48 83 c2 08 add $0x8,%rdx
1143: 48 39 ca cmp %rcx,%rdx
1146: 75 f4 jne 113c <ASum+0x11>
1148: c3 retq
1149: b8 00 00 00 00 mov $0x0,%eax
114e: c3 retq

Adapted from a slide supplied by CMU.

The "x/35xb" directive to gdb says to examine (first x, meaning print) 35 bytes (b) viewed
as hexadecimal (second x) starting at ASum.

CS33 Intro to Computer Systems X–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disassembled

Dump of assembler code for function ASum:
0x112b <+0>: test %rsi,%rsi
0x112e <+3>: je 0x1149 <ASum+30>
0x1130 <+5>: mov %rdi,%rdx
0x1133 <+8>: lea (%rdi,%rsi,8),%rcx
0x1137 <+12>: mov $0x0,%eax
...

Alternate Disassembly

• Within gdb debugger
gdb <file>
disassemble ASum
– disassemble the ASum object code
x/35xb ASum
– examine the 35 bytes starting at ASum

Object
0x112b:

0x48
0x85
0xf6
0x74
0x19
0x48
0x89
0xfa
0x48
0x8d
0x0c
0xf7
.
.
.

The source for this is http://en.wikipedia.org/wiki/X86_instruction_listings, viewed on
6/20/2017, which came with the caveat that it may be out of date. While it's likely that
more instructions have been added since then, we won't be covering them in 33!

CS33 Intro to Computer Systems X–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

How Many Instructions are There?
• We cover ~30
• Implemented by Intel:

– 80 in original 8086
architecture

– 7 added with 80186
– 17 added with 80286
– 33 added with 386
– 6 added with 486
– 6 added with Pentium
– 1 added with Pentium MMX
– 4 added with Pentium Pro
– 8 added with SSE
– 8 added with SSE2
– 2 added with SSE3
– 14 added with x86-64
– 10 added with VT-x
– 2 added with SSE4a

• Total: 198
• Doesn’t count:

– floating-point instructions
» ~100

– SIMD instructions
» lots

– AMD-added instructions
– undocumented instructions

Supplied by CMU.

Note that for shift instructions, the Src operand (which is the size of the shift) must
either be an immediate operand or be a designator for a one-byte register (e.g., %cl – see
the slide on general-purpose registers for IA32).

Also note that what's given in the slide are the versions for 32-bit operands. There are
also versions for 8-, 16-, and 64-bit operands, with the "l" replaced with the appropriate
letter ("b", "s", or "q").

CS33 Intro to Computer Systems X–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Some Arithmetic Operations

• Two-operand instructions:
Format Computation
addl Src,Dest Dest = Dest + Src
subl Src,Dest Dest = Dest - Src
imull Src,Dest Dest = Dest * Src
shll Src,Dest Dest = Dest << Src Also called sall
sarl Src,Dest Dest = Dest >> Src Arithmetic
shrl Src,Dest Dest = Dest >> Src Logical
xorl Src,Dest Dest = Dest ^ Src
andl Src,Dest Dest = Dest & Src
orl Src,Dest Dest = Dest | Src

– watch out for argument order!

Adapted from a slide supplied by CMU.

CS33 Intro to Computer Systems X–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Some Arithmetic Operations

• One-operand Instructions
incl Dest = Dest + 1
decl Dest = Dest - 1
negl Dest = - Dest
notl Dest = ~Dest

• See textbook for more instructions

• See Intel documentation for even more

Supplied by CMU, but converted to x86-64.

CS33 Intro to Computer Systems X–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Arithmetic Expression Example

int arith(int x, int y, int z)
{
int t1 = x+y;
int t2 = z+t1;
int t3 = x+4;
int t4 = y * 48;
int t5 = t3 + t4;
int rval = t2 * t5;
return rval;

}

arith:
leal (%rdi,%rsi), %eax
addl %edx, %eax
leal (%rsi,%rsi,2), %edx
shll $4, %edx
leal 4(%rdi,%rdx), %ecx
imull %ecx, %eax
ret

Supplied by CMU, but converted to x86-64.

CS33 Intro to Computer Systems X–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding arith

leal (%rdi,%rsi), %eax
addl %edx, %eax
leal (%rsi,%rsi,2), %edx
shll $4, %edx
leal 4(%rdi,%rdx), %ecx
imull %ecx, %eax
ret

int arith(int x, int y, int z)
{
int t1 = x+y;
int t2 = z+t1;
int t3 = x+4;
int t4 = y * 48;
int t5 = t3 + t4;
int rval = t2 * t5;
return rval;

}

%rsi

%rdi

y

x

%rdx z

Supplied by CMU, but converted to x86-64.

By convention, the first three arguments to a function are placed in registers rdi, rsi,
and rdx, respectively. Note that, also by convention, functions put their return values in
register eax/rax.

CS33 Intro to Computer Systems X–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding arith
int arith(int x, int y, int z)
{
int t1 = x+y;
int t2 = z+t1;
int t3 = x+4;
int t4 = y * 48;
int t5 = t3 + t4;
int rval = t2 * t5;
return rval;

}

leal (%rdi,%rsi), %eax # eax = x+y (t1)
addl %edx, %eax # eax = t1+z (t2)
leal (%rsi,%rsi,2), %edx # edx = 3*y (t4)
shll $4, %edx # edx = t4*16 (t4)
leal 4(%rdi,%rdx), %ecx # ecx = x+4+t4 (t5)
imull %ecx, %eax # eax *= t5 (rval)
ret

%rsi

%rdi

y

x

%rdx z

Supplied by CMU, but converted to x86-64.

CS33 Intro to Computer Systems X–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Observations about arith
int arith(int x, int y, int z)
{
int t1 = x+y;
int t2 = z+t1;
int t3 = x+4;
int t4 = y * 48;
int t5 = t3 + t4;
int rval = t2 * t5;
return rval;

}

leal (%rdi,%rsi), %eax # eax = x+y (t1)
addl %edx, %eax # eax = t1+z (t2)
leal (%rsi,%rsi,2), %edx # edx = 3*y (t4)
shll $4, %edx # edx = t4*16 (t4)
leal 4(%rdi,%rdx), %ecx # ecx = x+4+t4 (t5)
imull %ecx, %eax # eax *= t5 (rval)
ret

• Instructions in different order
from C code

• Some expressions might
require multiple instructions

• Some instructions might cover
multiple expressions

Supplied by CMU, but converted to x86-64.

Note, again, that the value that a function returns is put into %rax (or its 32-bit version,
%eax).

CS33 Intro to Computer Systems X–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Another Example

int logical(int x, int y)
{
int t1 = x^y;
int t2 = t1 >> 17;
int mask = (1<<13) - 7;
int rval = t2 & mask;
return rval;

}

xorl %esi, %edi # edi = x^y (t1)
sarl $17, %edi # edi = t1>>17 (t2)
movl %edi, %eax # eax = edi
andl $8185, %eax # eax = t2 & mask (rval)

213 = 8192, 213 – 7 = 8185

Note that xor'ing anything with itself results in 0.

CS33 Intro to Computer Systems X–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 3

• What is the final value in %ecx?

xorl %ecx, %ecx
incl %ecx
shll %cl, %ecx # %cl is the low byte of %ecx

addl %ecx, %ecx

a) 0
b) 2
c) 4
d) 8

