
Most of the slides in this lecture are either from or adapted from slides provided by the
authors of the textbook “Computer Systems: A Programmer’s Perspective,” 2nd Edition
and are provided from the website of Carnegie-Mellon University, course 15-213, taught
by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated
“Supplied by CMU” in the notes section of the slides.

CS33 Intro to Computer Systems XI–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Machine Programming (3)

Here we have a simple function that swaps the two components of a structure that's
passed to it. (Assume that %rdi contains the argument.) Note that even though we use
the "e" form of the registers to hold the (32-bit) data, we need the "r" form to hold the 64-
bit addresses.

CS33 Intro to Computer Systems XI–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Swapxy for Ints

struct xy {
int x;
int y;

}
void swapxy(struct xy *p){
int temp = p->x;
p->x = p->y;
p->y = temp;

}

swap:
movl (%rdi), %eax
movl 4(%rdi), %edx
movl %edx, (%rdi)
movl %eax, 4(%rdi)
ret

• Pointers are 64 bits
• What they point to are 32 bits

Note that using single-byte versions of registers has a different behavior from using 4-
byte versions of registers. Putting data into the latter using mov causes the upper bytes
to be zeroed. But with the byte versions, putting data into them does not affect the
upper bytes.

CS33 Intro to Computer Systems XI–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Bytes

• Each register has a byte version
– e.g., %r10: %r10b; see earlier slide for x86 registers

• Needed for byte instructions
– movb (%rax, %rsi), %r10b
– sets only the low byte in %r10

» other seven bytes are unchanged

• Alternatives
– movzbq (%rax, %rsi), %r10

» copies byte to low byte of %r10
» zeroes go to higher bytes

– movsbq (%rax, %rsi), %r10
» copies byte to low byte of %r10
» sign is extended to all higher bits

Supplied by CMU.

Note that normally one does not ask gcc to produce assembler code, but instead it
compiles C code directly into machine code (producing an object file). Note also that the
gcc command actually invokes a script; the compiler (also known as gcc) compiles code
into either assembler code or machine code; if necessary, the assembler (as) assembles
assembler code into object code. The linker (ld) links together multiple object files
(containing object code) into an executable program.

CS33 Intro to Computer Systems XI–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

text

text

binary

binary

Compiler (gcc -S)

Assembler (as)

Linker (ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
– Code in files p1.c p2.c
– Compile with command: gcc –O1 p1.c p2.c -o p
»use basic optimizations (-O1)
»put resulting binary in file p

CS33 Intro to Computer Systems XI–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Example
long ASum(long *a, unsigned long size) {

long i, sum = 0;

for (i=0; i<size; i++)
sum += a[i];

return sum;
}

int main() {
long array[3] = {2,117,-6};
long sum = ASum(array, 3);
return sum;

}

Here is the assembler code produced by gcc from the C code of the previous slide. Note
that the two movl instructions are ostensibly just copying a zero into %edx (a 32-bit
register). However, what it’s really doing is copying a zero in the 64-bit register %rdx (the
64-bit extension of %edx). This happens because, as we discussed earlier, when one
copies something into a 32-bit register, the high-order 32 bits of its extension is filled
with 0s.

CS33 Intro to Computer Systems XI–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code
ASum:

testq %rsi, %rsi
je .L4
movq %rdi, %rax
leaq (%rdi,%rsi,8), %rcx
movl $0, %edx

.L3:
addq (%rax), %rdx
addq $8, %rax
cmpq %rcx, %rax
jne .L3

.L1:

movq %rdx, %rax
ret

.L4:
movl $0, %edx
jmp .L1

main:
subq $32, %rsp
movq $2, (%rsp)
movq $117, 8(%rsp)
movq $-6, 16(%rsp)
movq %rsp, %rdi

movl $3, %esi
call ASum
addq $32, %rsp
ret

Adapted from a slide supplied by CMU.

The lefthand column shows the object code produced by gcc. This was produced either
by assembling the code of the previous slide, or by compiling the C code of the slide
before that.

Suppose that all we have is the object code – we don’t have the assembler code and the
C code. Can we translate for object code to assembler code? (This is known as
disassembling.)

CS33 Intro to Computer Systems XI–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Code for ASum
0x1125 <ASum>:

0x48
0x85
0xf6
0x74
0x1c
0x48
0x89
0xf8
0x48
0x8d
0x0c
0xf7
.
.
.

Object Code

• Assembler
– translates .s into .o
– binary encoding of each instruction
– nearly complete image of executable

code
– missing linkages between code in

different files
• Linker

– resolves references between files
– combines with static run-time

libraries
» e.g., code for printf

– some libraries are dynamically linked
» linking occurs when program begins

execution

• Total of 39 bytes
• Each instruction:

1, 2, or 3 bytes
• Starts at address
0x1125

This is taken from Intel 64 and IA-32 Architecture Software Developer’s Manual, Volume
2: Instruction Set Reference; Order Number 325462-043US, Intel Corporation, May
2012 (https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-
sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4)

The point of the slide is that the instruction format is complicated, too much so for a
human to deal with. Which is why we talk about disassemblers in the next slides.

CS33 Intro to Computer Systems XI–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Instruction Format

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4

Adapted from a slide supplied by CMU.

objdump's rendition is approximate because it assumes everything in the file is
assembly code, and thus translates data into (often really weird) assembly code. Also, it
leaves off the suffix at the end of each instruction, assuming it can be determined from
context.

CS33 Intro to Computer Systems XI–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disassembled
Disassembling Object Code

• Disassembler
objdump -d <file>
– useful tool for examining object code
– produces approximate rendition of assembly code

0000000000001125 <ASum>:
1125: 48 85 f6 test %rsi,%rsi
1128: 74 1c je 1146 <ASum+0x21>
112a: 48 89 f8 mov %rdi,%rax
112d: 48 8d 0c f7 lea (%rdi,%rsi,8),%rcx
1131: ba 00 00 00 00 mov $0x0,%edx
1136: 48 03 10 add (%rax),%rdx
1139: 48 83 c0 08 add $0x8,%rax
113d: 48 39 c8 cmp %rcx,%rax
1140: 75 f4 jne 1136 <ASum+0x11>
1142: 48 89 d0 mov %rdx,%rax
1145: c3 retq
1146: ba 00 00 00 00 mov $0x0,%edx
114b: eb f5 jmp 1142 <ASum+0x1d>

Adapted from a slide supplied by CMU.

The "x/35xb" directive to gdb says to examine (first x, meaning print) 35 bytes (b) viewed
as hexadecimal (second x) starting at ASum.

The format of the output has been modified a bit from what gdb actually produces, so
that it will fit on the slide. In the dump of the assembler code, the addresses are actually
64-bit values (in hex) – we have removed the leading 0s. The output of the x command is
actually displayed in multiple columns. We have reorganized it into one column.

CS33 Intro to Computer Systems XI–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Disassembled

Dump of assembler code for function ASum:
0x1125 <+0>: test %rsi,%rsi
0x1128 <+3>: je 0x1146 <ASum+33>
0x112a <+5>: mov %rdi,%rax
0x112d <+8>: lea (%rdi,%rsi,8),%rcx
0x1131 <+12>: mov $0x0,%edx
...

Alternate Disassembly

• Within gdb debugger
gdb <file>
disassemble ASum
– disassemble the ASum object code
x/39xb ASum
– examine the 39 bytes starting at ASum

Object
0x1125:

0x48
0x85
0xf6
0x74
0x1c
0x48
0x89
0xf8
0x48
0x8d
0x0c
0xf7
.
.
.

The source for this is http://en.wikipedia.org/wiki/X86_instruction_listings, viewed on
6/20/2017, which came with the caveat that it may be out of date. While it's likely that
more instructions have been added since then, we won't be covering them in 33!

CS33 Intro to Computer Systems XI–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

How Many Instructions are There?
• We cover ~30
• Implemented by Intel:

– 80 in original 8086
architecture

– 7 added with 80186
– 17 added with 80286
– 33 added with 386
– 6 added with 486
– 6 added with Pentium
– 1 added with Pentium MMX
– 4 added with Pentium Pro
– 8 added with SSE
– 8 added with SSE2
– 2 added with SSE3
– 14 added with x86-64
– 10 added with VT-x
– 2 added with SSE4a

• Total: 198
• Doesn’t count:

– floating-point instructions
» ~100

– SIMD instructions
» lots

– AMD-added instructions
– undocumented instructions

Supplied by CMU.

Note that for shift instructions, the Src operand (which is the size of the shift) must
either be an immediate operand or be a designator for a one-byte register (e.g., %cl – see
the slide on general-purpose registers for IA32).

Also note that what's given in the slide are the versions for 32-bit operands. There are
also versions for 8-, 16-, and 64-bit operands, with the "l" replaced with the appropriate
letter ("b", "s", or "q").

CS33 Intro to Computer Systems XI–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Some Arithmetic Operations

• Two-operand instructions:
Format Computation
addl Src,Dest Dest = Dest + Src
subl Src,Dest Dest = Dest - Src
imull Src,Dest Dest = Dest * Src
shll Src,Dest Dest = Dest << Src Also called sall
sarl Src,Dest Dest = Dest >> Src Arithmetic
shrl Src,Dest Dest = Dest >> Src Logical
xorl Src,Dest Dest = Dest ^ Src
andl Src,Dest Dest = Dest & Src
orl Src,Dest Dest = Dest | Src

– watch out for argument order!

Adapted from a slide supplied by CMU.

CS33 Intro to Computer Systems XI–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Some Arithmetic Operations

• One-operand Instructions
incl Dest = Dest + 1
decl Dest = Dest - 1
negl Dest = - Dest
notl Dest = ~Dest

• See textbook for more instructions

• See Intel documentation for even more

Supplied by CMU, but converted to x86-64.

CS33 Intro to Computer Systems XI–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Arithmetic Expression Example

int arith(int x, int y, int z)
{
int t1 = x+y;
int t2 = z+t1;
int t3 = x+4;
int t4 = y * 48;
int t5 = t3 + t4;
int rval = t2 * t5;
return rval;

}

arith:
leal (%rdi,%rsi), %eax
addl %edx, %eax
leal (%rsi,%rsi,2), %edx
shll $4, %edx
leal 4(%rdi,%rdx), %ecx
imull %ecx, %eax
ret

Supplied by CMU, but converted to x86-64.

CS33 Intro to Computer Systems XI–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding arith

leal (%rdi,%rsi), %eax
addl %edx, %eax
leal (%rsi,%rsi,2), %edx
shll $4, %edx
leal 4(%rdi,%rdx), %ecx
imull %ecx, %eax
ret

int arith(int x, int y, int z)
{
int t1 = x+y;
int t2 = z+t1;
int t3 = x+4;
int t4 = y * 48;
int t5 = t3 + t4;
int rval = t2 * t5;
return rval;

}

%rsi

%rdi

y

x

%rdx z

Supplied by CMU, but converted to x86-64.

By convention, the first three arguments to a function are placed in registers rdi, rsi,
and rdx, respectively. Note that, also by convention, functions put their return values in
register eax/rax.

CS33 Intro to Computer Systems XI–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Understanding arith
int arith(int x, int y, int z)
{
int t1 = x+y;
int t2 = z+t1;
int t3 = x+4;
int t4 = y * 48;
int t5 = t3 + t4;
int rval = t2 * t5;
return rval;

}

leal (%rdi,%rsi), %eax # eax = x+y (t1)
addl %edx, %eax # eax = t1+z (t2)
leal (%rsi,%rsi,2), %edx # edx = 3*y (t4)
shll $4, %edx # edx = t4*16 (t4)
leal 4(%rdi,%rdx), %ecx # ecx = x+4+t4 (t5)
imull %ecx, %eax # eax *= t5 (rval)
ret

%rsi

%rdi

y

x

%rdx z

Supplied by CMU, but converted to x86-64.

CS33 Intro to Computer Systems XI–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Observations about arith
int arith(int x, int y, int z)
{
int t1 = x+y;
int t2 = z+t1;
int t3 = x+4;
int t4 = y * 48;
int t5 = t3 + t4;
int rval = t2 * t5;
return rval;

}

leal (%rdi,%rsi), %eax # eax = x+y (t1)
addl %edx, %eax # eax = t1+z (t2)
leal (%rsi,%rsi,2), %edx # edx = 3*y (t4)
shll $4, %edx # edx = t4*16 (t4)
leal 4(%rdi,%rdx), %ecx # ecx = x+4+t4 (t5)
imull %ecx, %eax # eax *= t5 (rval)
ret

• Instructions in different order
from C code

• Some expressions might
require multiple instructions

• Some instructions might cover
multiple expressions

Supplied by CMU, but converted to x86-64.

CS33 Intro to Computer Systems XI–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Another Example

int logical(int x, int y)
{
int t1 = x^y;
int t2 = t1 >> 17;
int mask = (1<<13) - 7;
int rval = t2 & mask;
return rval;

}

xorl %esi, %edi # edi = x^y (t1)
sarl $17, %edi # edi = t1>>17 (t2)
movl %edi, %eax # eax = edi
andl $8185, %eax # eax = t2 & mask (rval)

213 = 8192, 213 – 7 = 8185

Supplied by CMU, but converted to x86-64.

%rip is the instruction-pointer register. It contains the address of the next instruction to
be executed. CF, ZF, SF, and OF are the condition codes, referring to carry flag, zero
flag, sign flag, and overflow flag.

CS33 Intro to Computer Systems XI–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Processor State (x86-64, Partial)

%rsp

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

%rip CF ZF SF OF
condition codes

a1
a2
a3
a4

a5
a6

Supplied by CMU.

CS33 Intro to Computer Systems XI–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Condition Codes (Implicit Setting)

• Single-bit registers
CF carry flag (for unsigned) SF sign flag (for signed)
ZF zero flag OF overflow flag (for signed)

• Implicitly set (think of it as side effect) by arithmetic
operations
example: addl/addq Src,Dest ↔ t = a+b
CF set if carry out from most significant bit or borrow (unsigned overflow)
ZF set if t == 0
SF set if t < 0 (as signed)
OF set if two’s-complement (signed) overflow
(a>0 && b>0 && t<0) || (a<0 && b<0 && t>=0)

• Not set by lea instruction

Supplied by CMU.

CS33 Intro to Computer Systems XI–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Condition Codes (Explicit Setting: Compare)

• Explicit setting by compare instruction
cmpl/cmpq src2, src1

compares src1:src2
cmpl b,a like computing a-b without setting destination

CF set if carry out from most significant bit or borrow (used for
unsigned comparisons)
ZF set if a == b
SF set if (a-b) < 0 (as signed)
OF set if two’s-complement (signed) overflow
(a>0 && b<0 && (a-b)<0) || (a<0 && b>0 && (a-b)>0)

Supplied by CMU.

Note that if a&b<0, what is meant is that the most-significant bit is 1.

CS33 Intro to Computer Systems XI–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Condition Codes (Explicit Setting: Test)

• Explicit setting by test instruction
testl/testq src2, src1
testl b,a like computing a&b without setting destination

– sets condition codes based on value of Src1 & Src2
– useful to have one of the operands be a mask

ZF set when a&b == 0
SF set when a&b < 0

Supplied by CMU.

These operations allow one to set a byte depending on the values of the condition codes.

Some of these conditions aren't all that obvious. Suppose we are comparing A with B
(cmpl B,A). Thus the condition codes would be set as if we computed A-B. For signed
arithmetic, If A >= B, then the true result is non-negative. But some issues come up
because of two's complement arithmetic with a finite word size. If overflow does not
occur, then the sign flag should not be set. If overflow does occur (because A is positive,
B is negative, and A-B is a large positive number that does not fit in an int), then even
though the true result should have been positive, the actual result is negative. So, if
both the sign flag and the overflow flag are not set, we know that A >= B. If both flags are
set, we know the true result of the subtraction is positive and thus A>=B. But if one of
the two flags is set and the other isn't, then A must be less than B. Thus if ~(SF^OF) is
1, we know that A>=B. If ZF (zero flag) is set, we know that A==B. Thus for A>B, ZF is
not set.

For unsigned arithmetic, if A>B, then subtracting B from A doesn't require a borrow and
thus CF is not set; and since A is not equal to B, ZF is not set. If A<B, then subtracting
B from A requires a borrow and thus CF is set.

The other cases can be worked out similarly.

CS33 Intro to Computer Systems XI–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Reading Condition Codes

• SetX instructions
– set single byte based on combinations of condition codes

SetX Condition Description
sete Equal / Zero
setne Not Equal / Not Zero
sets Negative
setns Nonnegative
setg Greater (Signed)
setge Greater or Equal (Signed)
setl Less (Signed)
setle Less or Equal (Signed)
seta Above (unsigned)
setb Below (unsigned)

ZF
~ZF
SF
~SF
~(SF^OF)&~ZF
~(SF^OF)
(SF^OF)
(SF^OF)|ZF
~CF&~ZF
CF

Supplied by CMU, but converted to x86-64.

Recall that the first argument to a function is passed in %rdi (%edi) and the second in
%rsi (%esi).

CS33 Intro to Computer Systems XI–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

cmpl %esi, %edi # compare x : y
setg %al # %al = x > y
movzbl %al, %eax # zero rest of %eax/%rax

Reading Condition Codes (Cont.)
• SetX instructions:
– set single byte based on combination of

condition codes
• Uses byte registers
– does not alter remaining 7 bytes
– typically use movzbl to finish job

int gt(int x, int y)
{
return x > y;

}

Body

%al%ah%eax%rax

Supplied by CMU.

See the notes for slide 23.

CS33 Intro to Computer Systems XI–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Jumping

• jX instructions
– Jump to different part of program depending on condition codes

jX Condition Description
jmp 1 Unconditional
je ZF Equal / Zero
jne ~ZF Not Equal / Not Zero
js SF Negative
jns ~SF Nonnegative
jg ~(SF^OF)&~ZF Greater (Signed)
jge ~(SF^OF) Greater or Equal (Signed)
jl (SF^OF) Less (Signed)
jle (SF^OF)|ZF Less or Equal (Signed)
ja ~CF&~ZF Above (unsigned)
jb CF Below (unsigned)

Supplied by CMU, but converted to x86-64.

The function computes the absolute value of the difference of its two arguments.

CS33 Intro to Computer Systems XI–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Conditional-Branch Example

int absdiff(int x, int y)
{

int result;
if (x > y) {
result = x-y;

} else {
result = y-x;

}
return result;

}

absdiff:
movl %esi, %eax
cmpl %esi, %edi
jle .L6
subl %eax, %edi
movl %edi, %eax
jmp .L7

.L6:
subl %edi, %eax

.L7:
ret

Body1

Body2b

Body2a

x in %edi
y in %esi

Supplied by CMU, but converted to x86-64.

CS33 Intro to Computer Systems XI–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Conditional-Branch Example (Cont.)
int goto_ad(int x, int y)
{
int result;
if (x <= y) goto Else;
result = x-y;
goto Exit;

Else:
result = y-x;

Exit:
return result;

}

• C allows “goto” as means of
transferring control
– closer to machine-level

programming style
• Generally considered bad

coding style

absdiff:
movl %esi, %eax
cmpl %esi, %edi
jle .L6
subl %eax, %edi
movl %edi, %eax
jmp .L7

.L6:
subl %edi, %eax

.L7:
ret

Body1

Body2b

Body2a

Supplied by CMU.

C's conditional expression, as shown in the slide, is sometimes useful, but often results
in really difficult-to-read code.

CS33 Intro to Computer Systems XI–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code
val = Test ? Then_Expr : Else_Expr;

Goto Version
nt = !Test;
if (nt) goto Else;
val = Then_Expr;
goto Done;

Else:
val = Else_Expr;

Done:
. . .

General Conditional-Expression
Translation

– Test is expression returning
integer
== 0 interpreted as false
≠ 0 interpreted as true

– Create separate code regions
for then and else expressions

– Execute appropriate one

val = x>y ? x-y : y-x;

Supplied by CMU.

CS33 Intro to Computer Systems XI–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code
int pcount_do(unsigned x)
{
int result = 0;
do {
result += x & 0x1;
x >>= 1;

} while (x);
return result;

}

Goto Version
int pcount_do(unsigned x)
{
int result = 0;

loop:
result += x & 0x1;
x >>= 1;
if (x)
goto loop;

return result;
}

“Do-While” Loop Example

• Count number of 1’s in argument x (“popcount”)
• Use conditional branch either to continue looping or

to exit loop

Supplied by CMU.

Note that the condition codes are set as part of the execution of the shrl instruction.

CS33 Intro to Computer Systems XI–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Goto Version
“Do-While” Loop Compilation

Registers:
%edi x
%eax result

movl $0, %eax # result = 0
.L2: # loop:

movl %edi, %ecx
andl $1, %ecx # t = x & 1
addl %ecx, %eax # result += t
shrl %edi # x >>= 1
jne .L2 # if !0, goto loop

int pcount_do(unsigned x) {
int result = 0;

loop:
result += x & 0x1;
x >>= 1;
if (x)
goto loop;

return result;
}

Supplied by CMU.

CS33 Intro to Computer Systems XI–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code
do
Body
while (Test);

Goto Version
loop:
Body
if (Test)
goto loop

General “Do-While” Translation

• Body:

• Test returns integer
= 0 interpreted as false
≠ 0 interpreted as true

{
Statement1;
Statement2;
…

Statementn;
}

Supplied by CMU.

CS33 Intro to Computer Systems XI–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code Goto Version

“While” Loop Example

• Is this code equivalent to the do-while version?
– must jump out of loop if test fails

int pcount_while(unsigned x) {
int result = 0;
while (x) {
result += x & 0x1;
x >>= 1;

}
return result;

}

int pcount_do(unsigned x) {
int result = 0;
if (!x) goto done;

loop:
result += x & 0x1;
x >>= 1;
if (x)
goto loop;

done:
return result;

}

Supplied by CMU.

CS33 Intro to Computer Systems XI–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

While version
while (Test)

Body

Do-While Version
if (!Test)
goto done;

do
Body
while(Test);

done:

General “While” Translation

Goto Version
if (!Test)
goto done;

loop:
Body
if (Test)
goto loop;

done:

Supplied by CMU.

CS33 Intro to Computer Systems XI–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code

“For” Loop Example

• Is this code equivalent to other versions?

#define WSIZE 8*sizeof(int)
int pcount_for(unsigned x) {
int i;
int result = 0;
for (i = 0; i < WSIZE; i++) {
unsigned mask = 1 << i;
result += (x & mask) != 0;

}
return result;

}

Supplied by CMU.

CS33 Intro to Computer Systems XI–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

“For” Loop Form

for (Init; Test; Update)

Body

General Form

for (i = 0; i < WSIZE; i++) {
unsigned mask = 1 << i;
result += (x & mask) != 0;

}

i = 0

i < WSIZE

i++

{
unsigned mask = 1 << i;
result += (x & mask) != 0;

}

Init

Test

Update

Body

Supplied by CMU.

CS33 Intro to Computer Systems XI–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

“For” Loop à While Loop

for (Init; Test; Update)

Body

For Version

Init;

while (Test) {

Body

Update;
}

While Version

Supplied by CMU.

CS33 Intro to Computer Systems XI–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

“For” Loop à … à Goto

for (Init; Test; Update)
Body

For Version

Init;
while (Test) {

Body
Update;

}

While Version

Init;
if (!Test)
goto done;

loop:
Body
Update
if (Test)
goto loop;

done:

Init;
if (!Test)
goto done;

do
Body
Update

while(Test);
done:

Supplied by CMU.

CS33 Intro to Computer Systems XI–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code

“For” Loop Conversion Example

Initial test can be optimized away

#define WSIZE 8*sizeof(int)
int pcount_for(unsigned x) {
int i;
int result = 0;
for (i = 0; i < WSIZE; i++) {
unsigned mask = 1 << i;
result += (x & mask) != 0;

}
return result;

}

Goto Version
int pcount_for_gt(unsigned x) {
int i;
int result = 0;
i = 0;
if (!(i < WSIZE))
goto done;

loop:
{
unsigned mask = 1 << i;
result += (x & mask) != 0;

}
i++;
if (i < WSIZE)
goto loop;

done:
return result;

}

Init

!Test

Body

Update
Test

Code very much like this appears in level three of the traps project.

CS33 Intro to Computer Systems XI–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Switch-Statement
Example

long switch_eg (long m, long d) {
if (d < 1) return 0;
switch(m) {
case 1: case 3: case 5:
case 7: case 8: case 10:
case 12:

if (d > 31) return 0;
else return 1;

case 2:
if (d > 28) return 0;
else return 1;

case 4: case 6: case 9:
case 11:

if (d > 30) return 0;
else return 1;

default:
return 0;

}
return 0;

}

Adapted from slide supplied by CMU to account for changes in gcc.

The translation is “approximate” because C doesn’t have the notion of the target of a
goto being a variable. But, if it did, then the translation is what we’d want!

Otab (for "offset table") is a table of relative address of the jump targets. The idea is,
given a value of x, Otab[x] contains a reference to the code block that should be handled
for that case in the switch statement (this code block is known as the jump target).
These references are offsets from the address Otab. In other words, Otab is an address,
if we add to it the offset of a particular jump target, we get the absolute address of that
jump target.

CS33 Intro to Computer Systems XI–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Offset Structure

Code Block 0
Targ0:

Code Block 1
Targ1:

Code Block 2
Targ2:

Code Block n–1
Targn-1:

•
•
•

Targ0 Offset

Targ1 Offset

Targ2 Offset

Targn-1 Offset

•
•
•

Otab:

target = Otab + OTab[x];
goto *target;

switch(x) {
case val_0:
Block 0

case val_1:
Block 1
• • •

case val_n-1:
Block n–1

}

Switch Form

Approximate Translation

Jump Offset Table
Jump Targets

Here's the assembler code obtained by compiling our C code in gcc with the –O1
optimization flag (specifying that some, but not lots of optimization should be done). We
explain this code in subsequent slides. The jump offset table starts at label .L4.

CS33 Intro to Computer Systems XI–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code (1)
switch_eg:

movl $0, %eax
testq %rsi, %rsi
jle .L1
cmpq $12, %rdi
ja .L8

leaq .L4(%rip), %rdx
movslq (%rdx,%rdi,4), %rax
addq %rdx, %rax
jmp *%rax

.section .rodata

.align 4
.L4:

.long .L8-.L4

.long .L3-.L4

.long .L6-.L4

.long .L3-.L4

.long .L5-.L4

.long .L3-.L4

.long .L5-.L4

.long .L3-.L4

.long .L3-.L4

.long .L5-.L4

.long .L3-.L4

.long .L5-.L4

.long .L3-.L4

.text

CS33 Intro to Computer Systems XI–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code (2)

.L3:
cmpq $31, %rsi
setle %al
movzbl %al, %eax
ret

.L6:
cmpq $28, %rsi
setle %al
movzbl %al, %eax
ret

.L5:
cmpq $30, %rsi
setle %al
movzbl %al, %eax
ret

.L8:
movl $0, %eax

.L1:
ret

The first three instructions cause control to go to .L1 if the second argument (d) is less
than 1. At .L1 is code that simply returns (with a return value of 0).

CS33 Intro to Computer Systems XI–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (1)
switch_eg:

movl $0, %eax # return value set to 0
testq %rsi, %rsi # sets cc based on %rsi & %rsi
jle .L1 # go to L1, where it returns 0
cmpq $12, %rdi
ja .L8
leaq .L4(%rip), %rdx
movslq (%rdx,%rdi,4), %rax

addq %rdx, %rax
jmp *%rax

• testq %rsi, %rsi
• sets cc based on the contents of %rsi (d)
• jle

• jumps if (SF^OF)|ZF
• OF is not set
• jumps if SF or ZF is set (i.e., < 1)

The next two instructions simply check to make sure that %rsi (the first argument, m) is
less than or equal to 12. If not, control goes to .L8, which sets the return value to 0 and
returns. Of course, the return value (in %rax/%eax) is already zero, so setting it to zero
again is unnecessary.

Note that we’re using ja (jump if above), which is normally used after comparing
unsigned values. The first argument, m, is a (signed) long. But if it is interpreted as an
unsigned value, then if the leftmost bit (the sign bit) is set, it appears to be a very large
unsigned value, and thus the jump is taken.

CS33 Intro to Computer Systems XI–44 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (2)
switch_eg:

movl $0, %eax # return value set to 0
testq %rsi, %rsi # sets cc based on %rsi & %rsi
jle .L1 # go to L1, where it returns 0

cmpq $12, %rdi # %rdi : 12
ja .L8 # go to L8 if %rdi > 12 or < 0
leaq .L4(%rip), %rdx
movslq (%rdx,%rdi,4), %rax
addq %rdx, %rax
jmp *%rax

• ja .L8
• unsigned comparison, though m is signed!
• jumps if %rdi > 12
• also jumps if %rdi is negative

The table on the right is known as an offset table. Each line refers to the code to be
executed for the corresponding value of m. Each entry in the table is a long (recall that
in x86-64 assembler, long means 32 bits). The value of each entry is the difference
between the address of the table (.L4) and the address of the code to be executed for a
particular value of m (the other .L labels). Thus each entry is the distance (or offset) from
the beginning of the table to the code for each case. Note that this offset might be
negative. It’s assumed that the offset fits in a 32-bit signed quantity (which the system
guarantees to be true.)

One might ask why we put 32-bit offsets in the table rather than 64-bit addresses. The
reason is to reduce the size of these tables – if we used addresses, they’d be twice the
size.

This table is not executable (it just contains offsets), but it also should be treated as
read-only – its contents will never change. The directive “.section .rodata” tells the
assembler that we want this table to be located in memory that is read-only, but not
executable. The directive at the end of the table (“.text”)tells the assembler that what
follows is (again) executable code.

The highlighted code on the left is what interprets the table, We examine it next.

CS33 Intro to Computer Systems XI–45 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (3)
switch_eg:

movl $0, %eax

testq %rsi, %rsi

jle .L1

cmpq $12, %rdi
ja .L8

leaq .L4(%rip), %rdx
movslq (%rdx,%rdi,4), %rax
addq %rdx, %rax
jmp *%rax

.section .rodata

.align 4
.L4:

.long .L8-.L4 # m=0

.long .L3-.L4 # m=1

.long .L6-.L4 # m=2

.long .L3-.L4 # m=3

.long .L5-.L4 # m=4

.long .L3-.L4 # m=5

.long .L5-.L4 # m=6

.long .L3-.L4 # m=7

.long .L3-.L4 # m=8

.long .L5-.L4 # m=9

.long .L3-.L4 # m=10

.long .L5-.L4 # m=11

.long .L3-.L4 # m=12

.text

The highlighted code makes use of an indirect jump instruction, indicated by having an
asterisk before its register operand. The register contains an address, and the jump is
made to the code at that address.

CS33 Intro to Computer Systems XI–46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (4)
switch_eg:

movl $0, %eax

testq %rsi, %rsi

jle .L1

cmpq $12, %rdi
ja .L8

leaq .L4(%rip), %rdx
movslq (%rdx,%rdi,4), %rax
addq %rdx, %rax
jmp *%rax

.section .rodata

.align 4
.L4:

.long .L8-.L4 # m=0

.long .L3-.L4 # m=1

.long .L6-.L4 # m=2

.long .L3-.L4 # m=3

.long .L5-.L4 # m=4

.long .L3-.L4 # m=5

.long .L5-.L4 # m=6

.long .L3-.L4 # m=7

.long .L3-.L4 # m=8

.long .L5-.L4 # m=9

.long .L3-.L4 # m=10

.long .L5-.L4 # m=11

.long .L3-.L4 # m=12

.text

indirect
jump

The leaq instruction (load effective address, quad), performs an address computation,
but rather than fetching the data at the address, it stores the address itself in %rdx.

What’s unusual about the instruction is that it uses %rip (the instruction pointer) as the
base register, and has a displacement that is a label. This is a special case for the
assembler, which can compute the offset between the leaq instruction and the label, and
use that value for the displacement field.

CS33 Intro to Computer Systems XI–47 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (5)
switch_eg:

movl $0, %eax

testq %rsi, %rsi

jle .L1

cmpq $12, %rdi
ja .L8

leaq .L4(%rip), %rdx
movslq (%rdx,%rdi,4), %rax
addq %rdx, %rax
jmp *%rax

.section .rodata

.align 4
.L4:

.long .L8-.L4 # m=0

.long .L3-.L4 # m=1

.long .L6-.L4 # m=2

.long .L3-.L4 # m=3

.long .L5-.L4 # m=4

.long .L3-.L4 # m=5

.long .L5-.L4 # m=6

.long .L3-.L4 # m=7

.long .L3-.L4 # m=8

.long .L5-.L4 # m=9

.long .L3-.L4 # m=10

.long .L5-.L4 # m=11

.long .L3-.L4 # m=12

.text

The movslq instruction copies a long (32 bits) into a quad (64 bits), and does sign
extension so as to preserve the sign of the value being copied.

%rdi contains m, the first argument, which is also the argument of the switch statement.
We use it to index into the offset table: As we saw in the previous slide, %rdx contains
the address of the table, whose entries are each 4 bytes long. Thus we use %rdi as an
index register, with a scale factor of 4. The contents of that entry (which is the distance
from the table to the code that should be executed to handle this case) is copied into
%rax, using sign extension to fill the register.

CS33 Intro to Computer Systems XI–48 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (6)
switch_eg:

movl $0, %eax

testq %rsi, %rsi

jle .L1

cmpq $12, %rdi
ja .L8

leaq .L4(%rip), %rdx
movslq (%rdx,%rdi,4), %rax
addq %rdx, %rax
jmp *%rax

.section .rodata

.align 4
.L4:

.long .L8-.L4 # m=0

.long .L3-.L4 # m=1

.long .L6-.L4 # m=2

.long .L3-.L4 # m=3

.long .L5-.L4 # m=4

.long .L3-.L4 # m=5

.long .L5-.L4 # m=6

.long .L3-.L4 # m=7

.long .L3-.L4 # m=8

.long .L5-.L4 # m=9

.long .L3-.L4 # m=10

.long .L5-.L4 # m=11

.long .L3-.L4 # m=12

.text

The offset of the code we want to jump to is in %rax. To convert this offset into an
absolute address, we need to add to it the address of the table. That’s what the addq
instruction does.

We can now do the indirect jump, to the address contained in %rax.

CS33 Intro to Computer Systems XI–49 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (7)
switch_eg:

movl $0, %eax

testq %rsi, %rsi

jle .L1

cmpq $12, %rdi
ja .L8

leaq .L4(%rip), %rdx
movslq (%rdx,%rdi,4), %rax
addq %rdx, %rax
jmp *%rax

.section .rodata

.align 4
.L4:

.long .L8-.L4 # m=0

.long .L3-.L4 # m=1

.long .L6-.L4 # m=2

.long .L3-.L4 # m=3

.long .L5-.L4 # m=4

.long .L3-.L4 # m=5

.long .L5-.L4 # m=6

.long .L3-.L4 # m=7

.long .L3-.L4 # m=8

.long .L5-.L4 # m=9

.long .L3-.L4 # m=10

.long .L5-.L4 # m=11

.long .L3-.L4 # m=12

.text

CS33 Intro to Computer Systems XI–50 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Switch Statements and Traps

• The code we just looked at was compiled with
gcc’s O1 flag
– a moderate amount of “optimization”

• Traps is compiled with the O0 flag
– no optimization

• O0 often produces easier-to-read (but less
efficient) code
– not so for switch

On the left we have the O1 version of the code, on the right we have the O0.

CS33 Intro to Computer Systems XI–51 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

O1 vs. O0 Code
switch_egO1:

movl $0, %eax

testq %rsi, %rsi

jle .L1

cmpq $12, %rdi

ja .L8

leaq .L4(%rip), %rdx

movslq (%rdx,%rdi,4), %rax

addq %rdx, %rax

jmp *%rax

switch_eg00:
pushq %rbp

movq %rsp, %rbp

movq %rdi, -8(%rbp)

movq %rsi, -16(%rbp)

cmpq $0, -16(%rbp)

jg .L2

movl $0, %eax

jmp .L3

.L2:
cmpq $12, -8(%rbp)

ja .L4

movq -8(%rbp), %rax

leaq 0(,%rax,4), %rdx

leaq .L6(%rip), %rax

movl (%rdx,%rax), %eax

cltq

leaq .L6(%rip), %rdx
addq %rdx, %rax

jmp *%rax

The highlighted code is not present in the O1 version. It links this function’s stack frame
to its caller, something we’ll talk about in the next lecture. It also (rather inexplicably)
copies the arguments from the registers to the stack frame.

CS33 Intro to Computer Systems XI–52 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

O1 vs. O0 Code Explanation (1)
switch_egO1:

movl $0, %eax

testq %rsi, %rsi

jle .L1

cmpq $12, %rdi

ja .L8

leaq .L4(%rip), %rdx

movslq (%rdx,%rdi,4), %rax

addq %rdx, %rax

jmp *%rax

switch_eg00:
pushq %rbp

movq %rsp, %rbp

movq %rdi, -8(%rbp)
movq %rsi, -16(%rbp)

cmpq $0, -16(%rbp)

jg .L2

movl $0, %eax

jmp .L3

.L2:
cmpq $12, -8(%rbp)

ja .L4

movq -8(%rbp), %rax

leaq 0(,%rax,4), %rdx

leaq .L6(%rip), %rax

movl (%rdx,%rax), %eax

cltq

leaq .L6(%rip), %rdx
addq %rdx, %rax

jmp *%rax

The next four instructions compare the second argument (d) with 0; if it’s less than or
equal to zero, it returns 0 (.L3 is the label of code that simply returns). Otherwise it
jumps to .L2.

CS33 Intro to Computer Systems XI–53 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

O1 vs. O0 Code Explanation (2)
switch_egO1:

movl $0, %eax

testq %rsi, %rsi

jle .L1

cmpq $12, %rdi

ja .L8

leaq .L4(%rip), %rdx

movslq (%rdx,%rdi,4), %rax

addq %rdx, %rax

jmp *%rax

switch_eg00:
pushq %rbp

movq %rsp, %rbp

movq %rdi, -8(%rbp)

movq %rsi, -16(%rbp)

cmpq $0, -16(%rbp)

jg .L2
movl $0, %eax

jmp .L3

.L2:
cmpq $12, -8(%rbp)

ja .L4

movq -8(%rbp), %rax

leaq 0(,%rax,4), %rdx

leaq .L6(%rip), %rax

movl (%rdx,%rax), %eax

cltq

leaq .L6(%rip), %rdx
addq %rdx, %rax

jmp *%rax

The next two instructions do the same thing as the cmpq and ja instructions do in the
O1 code. If the first argument (m) is greater than 12 or less than 0, these instructions
cause a jump (in this case to .L4, which labels what’s essentially the same code as is
labelled by .L8 in the O1 code) to code that returns 0.

CS33 Intro to Computer Systems XI–54 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

O1 vs. O0 Code Explanation (3)
switch_egO1:

movl $0, %eax

testq %rsi, %rsi

jle .L1

cmpq $12, %rdi

ja .L8

leaq .L4(%rip), %rdx

movslq (%rdx,%rdi,4), %rax

addq %rdx, %rax

jmp *%rax

switch_eg00:
pushq %rbp

movq %rsp, %rbp

movq %rdi, -8(%rbp)

movq %rsi, -16(%rbp)

cmpq $0, -16(%rbp)

jg .L2

movl $0, %eax

jmp .L3

.L2:
cmpq $12, -8(%rbp)

ja .L4

movq -8(%rbp), %rax

leaq 0(,%rax,4), %rdx

leaq .L6(%rip), %rax

movl (%rdx,%rax), %eax

cltq

leaq .L6(%rip), %rdx
addq %rdx, %rax

jmp *%rax

In the next three instructions, the first one copies the first argument (m, which had been
earlier copied to the stack) to %rax. Recall that m is the argument to the switch
statement, and will be used as an index into the jump table.

The first leaq statement computes four times %rax, and puts the result into %rdx. The
next leaq statement does the same thing as the leaq statement of the O1 code, it
computes the address of the offset table (which is labelled with .L6 in this version) and
stores it in %rax.

CS33 Intro to Computer Systems XI–55 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

O1 vs. O0 Code Explanation (4)
switch_egO1:

movl $0, %eax

testq %rsi, %rsi

jle .L1

cmpq $12, %rdi

ja .L8

leaq .L4(%rip), %rdx

movslq (%rdx,%rdi,4), %rax

addq %rdx, %rax

jmp *%rax

switch_eg00:
pushq %rbp

movq %rsp, %rbp

movq %rdi, -8(%rbp)

movq %rsi, -16(%rbp)

cmpq $0, -16(%rbp)

jg .L2

movl $0, %eax

jmp .L3

.L2:
cmpq $12, -8(%rbp)

ja .L4

movq -8(%rbp), %rax
leaq 0(,%rax,4), %rdx

leaq .L6(%rip), %rax
movl (%rdx,%rax), %eax

cltq

leaq .L6(%rip), %rdx
addq %rdx, %rax

jmp *%rax

Finally, the movl and cltq instructions, along with the first of the earlier leaq
instructions, do what the movslq instruction did in the O1 version. The movl
instruction copies the offset-table entry into (32-bit) %eax. The cltq is a rather obscure
instruction that sign extends the value in %eax so that it fills the entire (64-bit) %rax.
Then the address of the offset table is computed (again) via the leaq instruction.

The final two instructions do what the final two instructions do for the O1 code: they
add the offset obtained from the table to the address of the table, then jump to the
resulting address.

CS33 Intro to Computer Systems XI–56 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

O1 vs. O0 Code Explanation (5)
switch_egO1:

movl $0, %eax

testq %rsi, %rsi

jle .L1

cmpq $12, %rdi

ja .L8

leaq .L4(%rip), %rdx

movslq (%rdx,%rdi,4), %rax

addq %rdx, %rax

jmp *%rax

switch_eg00:
pushq %rbp

movq %rsp, %rbp

movq %rdi, -8(%rbp)

movq %rsi, -16(%rbp)

cmpq $0, -16(%rbp)

jg .L2

movl $0, %eax

jmp .L3

.L2:
cmpq $12, -8(%rbp)

ja .L4

movq -8(%rbp), %rax

leaq 0(,%rax,4), %rdx

leaq .L6(%rip), %rax

movl (%rdx,%rax), %eax

cltq

leaq .L6(%rip), %rdx
addq %rdx, %rax

jmp *%rax

So, now that we know how switch statements are implemented, how might we "reverse
engineer" object code to figure out the switch statement it implements?

Here we're running gdb on a program that contains a call to switch_eg. We gave the
command "layout asm" so that we can see the assembly listing at the top of the slide. We
set a breakpoint at switch_eg.

Assuming no knowledge of the original source code, we look at the code for switch_eg
and see an indirect jump instruction at switch_eg+67, which is a definite indication that
the C code contained a switch statement. We can see that %rdx contains the address of
the offset table, and that %rax will be set to the entry in the table at the index given in
%rdi. The contents of %rdx are added to %rax, thus causing %rax to point to the
instruction the indirect jump will go to.

So, with all this in mind, after the breakpoint was reached, we issued the stepi (si)
command 15 times so that we could see the values of all registers just before the
indirect jmp. We then used the x/14dw gdb command to print 14 entries of a jump
offset table starting at the address contained in %rdx. We had to guess how many
entries there are – 14 seems reasonable in that it seems unlikely that a switch statement
has more than 14 cases, though it might. We know that the table comes after the
executable code, so the entries are negative. We see seven entries with values reasonably
close to one another, while the remaining entry is very different, so we conclude that the
jump table contains13 entries.

CS33 Intro to Computer Systems XI–57 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Gdb and Switch (1)
│B+ 0x555555555169 <switch_eg+4> mov %rdi,-0x8(%rbp) │
│ 0x55555555516d <switch_eg+8> mov %rsi,-0x10(%rbp) │
│ 0x555555555171 <switch_eg+12> cmpq $0x0,-0x10(%rbp) │
│ 0x555555555176 <switch_eg+17> jg 0x55555555517f <nswitch+26> │
│ 0x555555555178 <switch_eg+19> mov $0x0,%eax │
│ 0x55555555517d <switch_eg+24> jmp 0x5555555551ee <nswitch+137> │
│ 0x55555555517f <switch_eg+26> cmpq $0xc,-0x8(%rbp) │
│ 0x555555555184 <switch_eg+31> ja 0x5555555551e9 <nswitch+132> │
│ 0x555555555186 <switch_eg+33> mov -0x8(%rbp),%rax │
│ 0x55555555518a <switch_eg+37> lea 0x0(,%rax,4),%rdx │
│ 0x555555555192 <switch_eg+45> lea 0xe6b(%rip),%rax # 0x5555555 │
│ 0x555555555199 <switch_eg+52> mov (%rdx,%rax,1),%eax │
│ 0x55555555519c <switch_eg+55> cltq │
│ 0x55555555519e <switch_eg+57> lea 0xe5f(%rip),%rdx # 0x5555555 │
│ 0x5555555551a5 <switch_eg+64> add %rdx,%rax │
│ >0x5555555551a8 <switch_eg+67> jmp *%rax │

(gdb) x/14dw $rdx
0x555555556004: -3611 -3674 -3653 -3674
0x555555556014: -3632 -3674 -3632 -3674
0x555555556024: -3674 -3632 -3674 -3632
0x555555556034: -3674 1734439765

The code for some case of the switch should come immediately after the jmp (what else
would go there?!). So the smallest (most negative) offset in the jump offset table must be
the offset for this first code segment. Thus offset -3674 corresponds to switch_eg+69 in
the assembly listing. It's at indices 1, 3, 5, 7, 8, 10, and 12 of the table, so it's this code
that's executed when the first argument of switch_eg is 1, 3, 5, 7, 8, 10, or 12.

Knowing this, we can figure out the rest.

CS33 Intro to Computer Systems XI–58 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Gdb and Switch (2)
│ 0x5555555551a5 <switch_eg+64> add %rdx,%rax │
│ >0x5555555551a8 <switch_eg+67> jmp *%rax │
│ 0x5555555551aa <switch_eg+69> cmpq $0x1f,-0x10(%rbp) │
│ 0x5555555551af <switch_eg+74> jle 0x5555555551b8 <nswitch+83> │
│ 0x5555555551b1 <switch_eg+76> mov $0x0,%eax │
│ 0x5555555551b6 <switch_eg+81> jmp 0x5555555551ee <nswitch+137> │
│ 0x5555555551b8 <switch_eg+83> mov $0x1,%eax │
│ 0x5555555551bd <switch_eg+88> jmp 0x5555555551ee <nswitch+137> │
│ 0x5555555551bf <switch_eg+90> cmpq $0x1c,-0x10(%rbp) │
│ 0x5555555551c4 <switch_eg+95> jle 0x5555555551cd <nswitch+104> │

(gdb) x/14dw $rdx
0x555555556004: -3611 -3674 -3653 -3674
0x555555556014: -3632 -3674 -3632 -3674
0x555555556024: -3674 -3632 -3674 -3632
0x555555556034: -3674 1734439765

CS33 Intro to Computer Systems XI–59 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1
What C code would you compile to get the following
assembler code?

movq $0, %rax
.L2:

movq %rax, a(,%rax,8)
addq $1, %rax
cmpq $10, %rax
jne .L2
ret

long a[10];
void func() {
long i;
for (i=0; i<10; i++)
a[i]= 1;

}

b

long a[10];
void func() {
long i=0;
while (i<10)
a[i]= i++;

}

a

long a[10];
void func() {
long i=0;
switch (i) {

case 0:
a[i] = 0;
break;

default:
a[i] = 10

}
}

c

