
Some of the slides in this lecture are either from or adapted from slides provided by the
authors of the textbook “Computer Systems: A Programmer’s Perspective,” 2nd Edition
and are provided from the website of Carnegie-Mellon University, course 15-213, taught
by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated
“Supplied by CMU” in the notes section of the slides.

CS33 Intro to Computer Systems XII–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Machine Programming (4)

Code very much like this appears in level three of the traps project.

CS33 Intro to Computer Systems XII–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Switch-Statement
Example

long switch_eg (long m, long d) {
if (d < 1) return 0;
switch(m) {
case 1: case 3: case 5:
case 7: case 8: case 10:
case 12:

if (d > 31) return 0;
else return 1;

case 2:
if (d > 28) return 0;
else return 1;

case 4: case 6: case 9:
case 11:

if (d > 30) return 0;
else return 1;

default:
return 0;

}
return 0;

}

Adapted from slide supplied by CMU to account for changes in gcc.

The translation is “approximate” because C doesn’t have the notion of the target of a
goto being a variable. But, if it did, then the translation is what we’d want!

Otab (for "offset table") is a table of relative address of the jump targets. The idea is,
given a value of x, Otab[x] contains a reference to the code block that should be handled
for that case in the switch statement (this code block is known as the jump target).
These references are offsets from the address Otab. In other words, Otab is an address,
if we add to it the offset of a particular jump target, we get the absolute address of that
jump target.

CS33 Intro to Computer Systems XII–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Offset Structure

Code Block 0
Targ0:

Code Block 1
Targ1:

Code Block 2
Targ2:

Code Block n–1
Targn-1:

•
•
•

Targ0 Offset

Targ1 Offset

Targ2 Offset

Targn-1 Offset

•
•
•

Otab:

target = Otab + OTab[x];
goto *target;

switch(x) {
case val_0:
Block 0

case val_1:
Block 1
• • •

case val_n-1:
Block n–1

}

Switch Form

Approximate Translation

Jump Offset Table
Jump Targets

Here's the assembler code obtained by compiling our C code in gcc with the –O1
optimization flag (specifying that some, but not lots of optimization should be done). We
explain this code in subsequent slides. The jump offset table starts at label .L4.

CS33 Intro to Computer Systems XII–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code (1)
switch_eg:

movl $0, %eax
testq %rsi, %rsi
jle .L1
cmpq $12, %rdi
ja .L8

leaq .L4(%rip), %rdx
movslq (%rdx,%rdi,4), %rax
addq %rdx, %rax
jmp *%rax

.section .rodata

.align 4
.L4:

.long .L8-.L4

.long .L3-.L4

.long .L6-.L4

.long .L3-.L4

.long .L5-.L4

.long .L3-.L4

.long .L5-.L4

.long .L3-.L4

.long .L3-.L4

.long .L5-.L4

.long .L3-.L4

.long .L5-.L4

.long .L3-.L4

.text

CS33 Intro to Computer Systems XII–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code (2)

.L3:
cmpq $31, %rsi
setle %al
movzbl %al, %eax
ret

.L6:
cmpq $28, %rsi
setle %al
movzbl %al, %eax
ret

.L5:
cmpq $30, %rsi
setle %al
movzbl %al, %eax
ret

.L8:
movl $0, %eax

.L1:
ret

The first three instructions cause control to go to .L1 if the second argument (d) is less
than 1. At .L1 is code that simply returns (with a return value of 0).

CS33 Intro to Computer Systems XII–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (1)
switch_eg:

movl $0, %eax # return value set to 0
testq %rsi, %rsi # sets cc based on %rsi & %rsi
jle .L1 # go to L1, where it returns 0
cmpq $12, %rdi
ja .L8
leaq .L4(%rip), %rdx
movslq (%rdx,%rdi,4), %rax

addq %rdx, %rax
jmp *%rax

• testq %rsi, %rsi
• sets cc based on the contents of %rsi (d)
• jle

• jumps if (SF^OF)|ZF
• OF is not set
• jumps if SF or ZF is set (i.e., < 1)

The next two instructions simply check to make sure that %rdi (the first argument, m) is
less than or equal to 12. If not, control goes to .L8, which sets the return value to 0 and
returns. Of course, the return value (in %rax/%eax) is already zero, so setting it to zero
again is unnecessary.

Note that we’re using ja (jump if above), which is normally used after comparing
unsigned values. The first argument, m, is a (signed) long. But if it is interpreted as an
unsigned value, then if the leftmost bit (the sign bit) is set, it appears to be a very large
unsigned value, and thus the jump is taken.

CS33 Intro to Computer Systems XII–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (2)
switch_eg:

movl $0, %eax # return value set to 0
testq %rsi, %rsi # sets cc based on %rsi & %rsi
jle .L1 # go to L1, where it returns 0

cmpq $12, %rdi # %rdi : 12
ja .L8 # go to L8 if %rdi > 12 or < 0
leaq .L4(%rip), %rdx
movslq (%rdx,%rdi,4), %rax
addq %rdx, %rax
jmp *%rax

• ja .L8
• unsigned comparison, though m is signed!
• jumps if %rdi > 12
• also jumps if %rdi is negative

The table on the right is known as an offset table. Each line refers to the code to be
executed for the corresponding value of m. Each entry in the table is a long (recall that
in x86-64 assembler, long means 32 bits). The value of each entry is the difference
between the address of the table (.L4) and the address of the code to be executed for a
particular value of m (the other .L labels). Thus each entry is the distance (or offset) from
the beginning of the table to the code for each case. Note that this offset will be negative,
as explained below. It’s assumed that the offset fits in a 32-bit signed quantity (which
the system guarantees to be true.)

One might ask why we put 32-bit offsets in the table rather than 64-bit addresses. The
reason is to reduce the size of these tables – if we used addresses, they’d be twice the
size.

This table is not executable (it just contains offsets), but it should be treated as read-
only – its contents will never change. The directive “.section .rodata” tells the assembler
that we want this table to be located in memory that is read-only, but not executable.
The directive at the end of the table (“.text”) tells the assembler that what follows is
(again) executable code. This read-only, non-executable memory is located at a higher
address than the executable code is (accept this as a fact for now, we’ll see later why it is
so). Thus the offsets in the table are negative.

The highlighted code on the left is what interprets the table, We examine it next.

CS33 Intro to Computer Systems XII–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (3)
switch_eg:

movl $0, %eax

testq %rsi, %rsi

jle .L1

cmpq $12, %rdi
ja .L8

leaq .L4(%rip), %rdx
movslq (%rdx,%rdi,4), %rax
addq %rdx, %rax
jmp *%rax

.section .rodata

.align 4
.L4:

.long .L8-.L4 # m=0

.long .L3-.L4 # m=1

.long .L6-.L4 # m=2

.long .L3-.L4 # m=3

.long .L5-.L4 # m=4

.long .L3-.L4 # m=5

.long .L5-.L4 # m=6

.long .L3-.L4 # m=7

.long .L3-.L4 # m=8

.long .L5-.L4 # m=9

.long .L3-.L4 # m=10

.long .L5-.L4 # m=11

.long .L3-.L4 # m=12

.text

The highlighted code makes use of an indirect jump instruction, indicated by having an
asterisk before its register operand. The register contains an address, and the jump is
made to the code at that address. Note that jump instructions that are not indirect have
constants as their operands. We’ll see later on that, because of this, indirect jumps are
often much slower than non-indirect jumps.

CS33 Intro to Computer Systems XII–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (4)
switch_eg:

movl $0, %eax

testq %rsi, %rsi

jle .L1

cmpq $12, %rdi
ja .L8

leaq .L4(%rip), %rdx
movslq (%rdx,%rdi,4), %rax
addq %rdx, %rax
jmp *%rax

.section .rodata

.align 4
.L4:

.long .L8-.L4 # m=0

.long .L3-.L4 # m=1

.long .L6-.L4 # m=2

.long .L3-.L4 # m=3

.long .L5-.L4 # m=4

.long .L3-.L4 # m=5

.long .L5-.L4 # m=6

.long .L3-.L4 # m=7

.long .L3-.L4 # m=8

.long .L5-.L4 # m=9

.long .L3-.L4 # m=10

.long .L5-.L4 # m=11

.long .L3-.L4 # m=12

.text

indirect
jump

The leaq instruction (load effective address, quad), performs an address computation,
but rather than fetching the data at the address, it stores the address itself in %rdx.

What’s unusual about the instruction is that it uses %rip (the instruction pointer) as the
base register, and has a displacement that is a label. This is a special case for the
assembler, which can compute the offset between the leaq instruction and the label, and
use that value for the displacement field. Thus the instruction puts the address of the
offset table (.L4) into %rdx.

CS33 Intro to Computer Systems XII–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (5)
switch_eg:

movl $0, %eax

testq %rsi, %rsi

jle .L1

cmpq $12, %rdi
ja .L8

leaq .L4(%rip), %rdx
movslq (%rdx,%rdi,4), %rax
addq %rdx, %rax
jmp *%rax

.section .rodata

.align 4
.L4:

.long .L8-.L4 # m=0

.long .L3-.L4 # m=1

.long .L6-.L4 # m=2

.long .L3-.L4 # m=3

.long .L5-.L4 # m=4

.long .L3-.L4 # m=5

.long .L5-.L4 # m=6

.long .L3-.L4 # m=7

.long .L3-.L4 # m=8

.long .L5-.L4 # m=9

.long .L3-.L4 # m=10

.long .L5-.L4 # m=11

.long .L3-.L4 # m=12

.text

The movslq instruction copies a long (32 bits) into a quad (64 bits), and does sign
extension so as to preserve the sign of the value being copied.

%rdi contains m, the first argument, which is also the argument of the switch statement.
We use it to index into the offset table: As we saw in the previous slide, %rdx contains
the address of the table, whose entries are each 4 bytes long. Thus we use %rdi as an
index register, with a scale factor of 4. The contents of that entry (which is the distance
from the table to the code that should be executed to handle this case) is copied into
%rax, using sign extension to fill the register.

CS33 Intro to Computer Systems XII–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (6)
switch_eg:

movl $0, %eax

testq %rsi, %rsi

jle .L1

cmpq $12, %rdi
ja .L8

leaq .L4(%rip), %rdx
movslq (%rdx,%rdi,4), %rax
addq %rdx, %rax
jmp *%rax

.section .rodata

.align 4
.L4:

.long .L8-.L4 # m=0

.long .L3-.L4 # m=1

.long .L6-.L4 # m=2

.long .L3-.L4 # m=3

.long .L5-.L4 # m=4

.long .L3-.L4 # m=5

.long .L5-.L4 # m=6

.long .L3-.L4 # m=7

.long .L3-.L4 # m=8

.long .L5-.L4 # m=9

.long .L3-.L4 # m=10

.long .L5-.L4 # m=11

.long .L3-.L4 # m=12

.text

The offset of the code we want to jump to is in %rax. To convert this offset into an
absolute address, we need to add to it the address of the table. That’s what the addq
instruction does.

We can now do the indirect jump, to the address contained in %rax.

CS33 Intro to Computer Systems XII–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code Explanation (7)
switch_eg:

movl $0, %eax

testq %rsi, %rsi

jle .L1

cmpq $12, %rdi
ja .L8

leaq .L4(%rip), %rdx
movslq (%rdx,%rdi,4), %rax
addq %rdx, %rax
jmp *%rax

.section .rodata

.align 4
.L4:

.long .L8-.L4 # m=0

.long .L3-.L4 # m=1

.long .L6-.L4 # m=2

.long .L3-.L4 # m=3

.long .L5-.L4 # m=4

.long .L3-.L4 # m=5

.long .L5-.L4 # m=6

.long .L3-.L4 # m=7

.long .L3-.L4 # m=8

.long .L5-.L4 # m=9

.long .L3-.L4 # m=10

.long .L5-.L4 # m=11

.long .L3-.L4 # m=12

.text

CS33 Intro to Computer Systems XII–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Switch Statements and Traps

• The code we just looked at was compiled with
gcc’s O1 flag
– a moderate amount of “optimization”

• Traps originally was compiled with the O0
flag
– no optimization

• O0 often produces easier-to-read (but less
efficient) code
– not so for switch

On the left we have the O1 version of the code, on the right we have the O0.

This is why we released a new version of traps that was compiled with –O1 (there were
no other changes).

CS33 Intro to Computer Systems XII–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

O1 vs. O0 Code
switch_egO1:

movl $0, %eax

testq %rsi, %rsi

jle .L1

cmpq $12, %rdi

ja .L8

leaq .L4(%rip), %rdx

movslq (%rdx,%rdi,4), %rax

addq %rdx, %rax

jmp *%rax

switch_eg00:
pushq %rbp

movq %rsp, %rbp

movq %rdi, -8(%rbp)

movq %rsi, -16(%rbp)

cmpq $0, -16(%rbp)

jg .L2

movl $0, %eax

jmp .L3

.L2:
cmpq $12, -8(%rbp)

ja .L4

movq -8(%rbp), %rax

leaq 0(,%rax,4), %rdx

leaq .L6(%rip), %rax

movl (%rdx,%rax), %eax

cltq

leaq .L6(%rip), %rdx
addq %rdx, %rax

jmp *%rax

So, now that we know how switch statements are implemented, how might we "reverse
engineer" object code to figure out the switch statement it implements?

Here we're running gdb on a program that contains a call to switch_eg. We gave the
command "layout asm" so that we can see the assembly listing at the top of the slide. We
set a breakpoint at switch_eg.

Assuming no knowledge of the original source code, we look at the code for switch_eg
and see an indirect jump instruction at switch_eg+30, which is a definite indication that
the C code contained a switch statement. We can see that %rdx contains the address of
the offset table, and that %rax will be set to the entry in the table at the index given in
%rdi. The contents of %rdx are added to %rax, thus causing %rax to point to the
instruction the indirect jump will go to.

Note also that for leaq instructions in which the base register is %rip, gdb indicates (as a
comment) what the computed address is (0x555555556004 in this case, which is
the address of the offset table).

So, with all this in mind, after the breakpoint was reached, we issued the stepi (si)
command 8 times so that we could see the values of all registers just before the indirect
jmp. We then used the x/14dw gdb command to print 14 entries of a jump offset table
starting at the address contained in %rdx. We had to guess how many entries there are –
14 seems reasonable in that it seems unlikely that a switch statement has more than 14
cases, though it might. We know that the table comes after the executable code, so the

CS33 Intro to Computer Systems XII–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Gdb and Switch (1)
│B+ 0x555555555165 <switch_eg> mov $0x0,%eax │
│ 0x55555555516a <switch_eg+5> test %rsi,%rsi │
│ 0x55555555516d <switch_eg+8> jle 0x5555555551ab <switch_eg+70> │
│ 0x55555555516f <switch_eg+10> cmp $0xc,%rdi │
│ 0x555555555173 <switch_eg+14> ja 0x5555555551a6 <switch_eg+65> │
│ 0x555555555175 <switch_eg+16> lea 0xe88(%rip),%rdx # 0x555555556004 │
│ 0x55555555517c <switch_eg+23> movslq (%rdx,%rdi,4),%rax │
│ 0x555555555180 <switch_eg+27> add %rdx,%rax │
│ >0x555555555183 <switch_eg+30> jmp *%rax │
│ 0x555555555185 <switch_eg+32> cmp $0x1f,%rsi │
│ 0x555555555189 <switch_eg+36> setle %al │
│ 0x55555555518c <switch_eg+39> movzbl %al,%eax │
│ 0x55555555518f <switch_eg+42> ret │

(gdb) x/14dw $rdx
0x555555556004: -3678 -3711 -3700 -3711
0x555555556014: -3689 -3711 -3689 -3711
0x555555556024: -3711 -3689 -3711 -3689
0x555555556034: -3711 1734439765

entries are negative. We see seven entries with values reasonably close to one another,
while the remaining entry is very different, so we conclude that the jump table
contains13 entries.

The code for some case of the switch should come immediately after the jmp (what else
would go there?!). So the smallest (most negative) offset in the jump offset table must be
the offset for this first code segment. Thus offset -3711 corresponds to switch_eg+32 in
the assembly listing. It's at indices 1, 3, 5, 7, 8, 10, and 12 of the table, so it's this code
that's executed when the first argument of switch_eg is 1, 3, 5, 7, 8, 10, or 12.

Knowing this, we can figure out the rest. The slide contains all the code of switch_eg
from the indirect jump to the end of the function (and thus the code for all the cases of
the switch statement).

CS33 Intro to Computer Systems XII–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Gdb and Switch (2)
│ >0x555555555183 <switch_eg+30> jmp *%rax │
│ 0x555555555185 <switch_eg+32> cmp $0x1f,%rsi │
│ 0x555555555189 <switch_eg+36> setle %al │
│ 0x55555555518c <switch_eg+39> movzbl %al,%eax │
│ 0x55555555518f <switch_eg+42> ret │
│ 0x555555555190 <switch_eg+43> cmp $0x1c,%rsi │
│ 0x555555555194 <switch_eg+47> setle %al │
│ 0x555555555197 <switch_eg+50> movzbl %al,%eax │
│ 0x55555555519a <switch_eg+53> ret │
│ 0x55555555519b <switch_eg+54> cmp $0x1e,%rsi │
│ 0x55555555519f <switch_eg+58> setle %al │
│ 0x5555555551a2 <switch_eg+61> movzbl %al,%eax │
│ 0x5555555551a5 <switch_eg+64> ret │
│ 0x5555555551a6 <switch_eg+65> mov $0x0,%eax │
│ 0x5555555551ab <switch_eg+70> ret │

(gdb) x/14dw $rdx
0x555555556004: -3678 -3711 -3700 -3711
0x555555556014: -3689 -3711 -3689 -3711
0x555555556024: -3711 -3689 -3711 -3689
0x555555556034: -3711 1734439765

Offset -3711

CS33 Intro to Computer Systems XII–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Not a Quiz!
What C code would you compile to get the following
assembler code?

movq $0, %rax
.L2:

movq %rax, a(,%rax,8)
addq $1, %rax
cmpq $10, %rax
jl .L2
ret

long a[10];
void func() {
long i;
for (i=0; i<10; i++)
a[i]= 1;

}

b

long a[10];
void func() {
long i=0;
while (i<10)
a[i]= i++;

}

a

long a[10];
void func() {
long i=0;
switch (i) {

case 0:
a[i] = 0;
break;

default:
a[i] = 10

}
}

c

Here we revisit the slide we saw a few weeks ago, this time drawing it with high
addresses at the top and low addresses at the bottom. The point is that a large amount
of virtual memory is reserved for the stack. In most cases there's plenty of room for the
stack and we don't have to worry about exceeding its bounds. However, if we do exceed
its bounds (by accessing memory outside of what's been allocated), the program will get
a seg fault.

Note that read-only data (such as the offset tables used for switch statements) is placed
just above the executable code.

CS33 Intro to Computer Systems XII–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Digression (Again): Where Stuff Is (Roughly)

0:

2n-1:

Virtual
Memory

Code
(aka text)

Global and
Static

Local Data

Stack

Read-Only Data

CS33 Intro to Computer Systems XII–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Function Call and Return

• Function A calls function B
• Function B calls function C

... several million instructions later

• C returns
– how does it know to return to B?

• B returns
– how does it know to return to A?

Stacks, as implemented on the X86 for most operating systems (and, in particular,
Linux, OSX, and Windows) grow "downwards", from high memory addresses to low
memory addresses. To avoid confusion, we will not use the works "top of stack" or
"bottom of stack" but will instead use "stack begin" and "current stack end". The total
amount of memory available for the stack is that between the beginning of the stack and
the "stack limit". When the stack end reaches the stack limit, we're out of memory for
the stack.

CS33 Intro to Computer Systems XII–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

The Runtime Stack

Stack

Stack Begin

Current Stack End

Stack Limit

Higher memory
addresses

Lower memory
addresses

The stack-pointer register (%rsp) points to the last byte of the stack. Thus, with little-
endian addressing, it points to the least-significant byte of the data item at the end of
the stack. Thus, %rsp in the slide points to what's perhaps an 8-byte item at the end of
the stack.

CS33 Intro to Computer Systems XII–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Stack Operations

0xfff8

0xffff
0xfffe
0xfffd
0xfffc
0xfffb
0xfffa
0xfff9

%rsp

Here we execute pushl to push a 4-byte item onto the end of the stack. First %rsp is
decremented by 4 bytes, then the item is copied into the 4-byte location now pointed to
by %rsp.

CS33 Intro to Computer Systems XII–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Push

0xfff8

0xffff
0xfffe
0xfffd
0xfffc
0xfffb
0xfffa
0xfff9

%rsp

0x34

0x00
0x00
0x12

0xfff4

0xfff7
0xfff6
0xfff5

%rsp

pushl $0x1234

-4 bytes

Here we pop an item off the stack. The popl instruction copies the 4-byte item pointed to
by %rsp into its argument, then increments %rsp by 4.

CS33 Intro to Computer Systems XII–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Pop

0xfff8

0xffff
0xfffe
0xfffd
0xfffc
0xfffb
0xfffa
0xfff9

%rsp

0x34

0x00
0x00
0x12

0xfff4

0xfff7
0xfff6
0xfff5

%rsp

popl %r8d

0x00 0x00 0x12 0x34

+4 bytes

%r8d:

When a function is called (using the call instruction), the (8-byte) address of the
instruction just after the call (the "return address") is pushed onto the stack. Then when
the called function returns (via the ret instruction), the 8-byte address at the end of the
stack (pointed to by %rsp) is copied into the instruction pointer (%rip), thus causing
control to resume at the instruction following the original call.

CS33 Intro to Computer Systems XII–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Call and Return

call func
addq $3, %rax

0x1000:
0x1004:

func:
...
movq $6, %rax
ret

0x2000:
...

0x2200:
0x2203:

Here we begin walking through what happens during a call and return.

Initially, %rip (the instruction pointer – what it points to is shown with a red arrow
pointing to the right) points to the call instruction – thus it's the next instruction to be
executed. %rsp (the stack pointer, shown with a green arrow pointing to the left) points
to the current end of the stack. The actual values contained in the relevant registers are
shown at the bottom of the slide (%rax isn't relevant yet, but will be soon!).

CS33 Intro to Computer Systems XII–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Call and Return

call func
addq $3, %rax

0x1000:
0x1004:

func:
...
movq $6, %rax
ret

0x2000:
...

0x2200:
0x2203:

00 00 00 0f ff f1 00 00 %rsp
00 00 00 00 00 00 10 00 %rip

%rax

0xffff10018
0xffff10010
0xffff10008
0xffff10000

st
ac

k
gr

ow
th

When the call instruction is executed, the address of the instruction after the call is
pushed onto the stack. Thus %rsp is decremented by eight and 0x1004 is copied to the
8-byte location that is now at the end of the stack. The instruction pointer, %rip, now
points to the first instruction of func.

CS33 Intro to Computer Systems XII–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Call and Return

call func
addq $3, %rax

0x1000:
0x1004:

func:
...
movq $6, %rax
ret

0x2000:
...

0x2200:
0x2203:

00 00 00 0f ff f0 ff f8 %rsp
00 00 00 00 00 00 20 00 %rip

%rax

0xffff10018
0xffff10010
0xffff10008
0xffff10000

00 00 00 00 00 00 10 04 0xffff0fff8st
ac

k
gr

ow
th

Our function func puts its return value (6) into %rax, then executes the ret instruction.
At this point, the address of the instruction following the call is at the end of the stack.

CS33 Intro to Computer Systems XII–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Call and Return

call func
addq $3, %rax

0x1000:
0x1004:

func:
...
movq $6, %rax
ret

0x2000:
...

0x2200:
0x2203:

00 00 00 0f ff f0 ff f8 %rsp
00 00 00 00 00 00 22 03 %rip
00 00 00 00 00 00 00 06 %rax

0xffff10018
0xffff10010
0xffff10008
0xffff10000

00 00 00 00 00 00 10 04 0xffff0fff8st
ac

k
gr

ow
th

The address at the end of the stack (0x1004) is popped off the stack and into %rip. Thus
execution resumes at the instruction following the call and %rsp is incremented by 8,
The function's return value is in %rax, for access by its caller.

CS33 Intro to Computer Systems XII–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Call and Return

call func
addq $3, %rax

0x1000:
0x1004:

func:
...
movq $6, %rax
ret

0x2000:
...

0x2200:
0x2203:

00 00 00 0f ff f1 00 00 %rsp
00 00 00 00 00 00 10 04 %rip
00 00 00 00 00 00 00 06 %rax

0xffff10018
0xffff10010
0xffff10008
0xffff10000

00 00 00 00 00 00 10 04 0xffff0fff8st
ac

k
gr

ow
th

We explore these two functions in the next set of slides, looking at how arguments and
local variables are stored on the stack.

CS33 Intro to Computer Systems XII–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Arguments and Local Variables (C Code)

int mainfunc() {
long array[3] =

{2,117,-6};
long sum =

ASum(array, 3);
...

return sum;
}

long ASum(long *a,

unsigned long size) {
long i, sum = 0;
for (i=0; i<size; i++)

sum += a[i];
return sum;

}

• Local variables usually
allocated on stack

• Arguments to functions
pushed onto stack

• Local variables may be
put in registers (and thus
not on stack)

Here we have compiled code formainfunc. We'll work through this in detail in upcoming
slides.

A function's stack frame is that part of the stack that holds its arguments, local
variables, etc. In this example code, register %rbp points to a known location towards
the beginning of the stack frame so that the arguments and local variables are located as
offsets from what %rbp points to.

Note, as will be explained, this is not what one would see when compiling it for
department computers, on which arguments are passed using registers.

CS33 Intro to Computer Systems XII–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Arguments and Local Variables (1)

mainfunc:
pushq %rbp # save old %rbp
movq %rsp, %rbp # set %rbp to point to stack frame
subq $32, %rsp # alloc. space for locals (array and sum)
movq $2, -32(%rbp) # initialize array[0]
movq $117, -24(%rbp) # initialize array[1]

movq $-6, -16(%rbp) # initialize array[2]
pushq $3 # push arg 2
leaq -32(%rbp), %rax # array address is put in %rax
pushq %rax # push arg 1
call ASum
addq $16, %rsp # pop args

movq %rax, -8(%rbp) # copy return value to sum
...
addq $32, %rsp # pop locals
popq %rbp # pop and restore old %rbp
ret

And here is the compiled code for ASum. The same caveats as given for the previous
slide apply to this one as well.

CS33 Intro to Computer Systems XII–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Arguments and Local Variables (2)

ASum:
pushq %rbp # save old %rbp
movq %rsp, %rbp # set %rbp to point to stack frame
movq $0, %rcx # i in %rcx
movq $0, %rax # sum in %rax
movq 16(%rbp), %rdx # copy arg 1 (array) into %rdx

loop:
cmpq 24(%rbp), %rcx # i < size?
jge done
addq (%rdx,%rcx,8), %rax # sum += a[i]
incq %rcx # i++
ja loop

done:
popq %rbp # pop and restore %rbp
ret

On entry tomainfunc, %rsp points to the caller's return address.

CS33 Intro to Computer Systems XII–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Enter mainfunc
mainfunc:

pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return addressrsp
rip

On entry tomainfunc, %rsp points to the caller's return address.

CS33 Intro to Computer Systems XII–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Enter mainfunc
mainfunc:

pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return addressrsp
rip

old %rbp

The first thing done by mainfunc is to save the caller's %rbp by pushing it onto the
stack.

CS33 Intro to Computer Systems XII–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Setup Frame

old %rbp

mainfunc:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return address
rsp

rip
rbp

Next, space for mainfunc's local variables is allocated on the stack by decrementing
%rsp by their total size (32 bytes). At this point we have mainfunc's stack frame in
place.

CS33 Intro to Computer Systems XII–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Allocate Local Variables

sum
array[2]
array[1]
array[0]

old %rbp

mainfunc:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return address
rsp riprbp

mainfuncʼs
stack
frame

ASum now initializes the stack space containing its local variables.

CS33 Intro to Computer Systems XII–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Initialize Local Array

sum
array[2]
array[1]
array[0]

old %rbp

mainfunc:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return address

rsp

rip
rbp

CS33 Intro to Computer Systems XII–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Initialize Local Array

sum
array[2]
array[1]
array[0]

old %rbp

mainfunc:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return address

rsp

rip

rbp

CS33 Intro to Computer Systems XII–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Initialize Local Array

sum
array[2]
array[1]
array[0]

old %rbp

mainfunc:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return address

rsp
rip

rbp

The second argument (3) to ASum is pushed onto the stack.

CS33 Intro to Computer Systems XII–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Push Second Argument

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 2

mainfunc:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return address

rsp rip

rbp

In preparation for pushing the first argument to ASum onto the stack, the address of the
array is put into %rax.

CS33 Intro to Computer Systems XII–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Get Array Address

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 2

mainfunc:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return address

rsp rip

rbp

And finally, the address of the array is pushed onto the stack as ASum's first argument.

CS33 Intro to Computer Systems XII–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Push First Argument

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
ASum arg 2

mainfunc:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return address

rsp
rip

rbp

mainfunc now calls ASum, pushing its return address onto the stack.

CS33 Intro to Computer Systems XII–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Call ASum

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

ASum arg 2

mainfunc:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return address

rsp
rip

rbp

As on entry tomainfunc, %rbp is saved by pushing it onto the stack.

CS33 Intro to Computer Systems XII–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Enter ASum

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

ASum:
pushq %rbp
movq %rsp, %rbp
movq $0, %rcx
movq $0, %rax
movq 16(%rbp), %rdx

loop:
cmpq 24(%rbp), %rcx
jge done
addq (%rdx,%rcx,8), %rax
incq %rcx
ja loop

done:
popq %rbp
ret

return address

rsp

rip

rbp

%rbp is now modified to point into ASum's stack frame.

CS33 Intro to Computer Systems XII–44 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Setup Frame

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

ASum:
pushq %rbp
movq %rsp, %rbp
movq $0, %rcx
movq $0, %rax
movq 16(%rbp), %rdx

loop:
cmpq 24(%rbp), %rcx
jge done
addq (%rdx,%rcx,8), %rax
incq %rcx
ja loop

done:
popq %rbp
ret

return address

rsp

rip
rbp

ASumʼs
stack
frame

ASum's instructions are now executed, summing the contents of its first argument and
storing the result in %rax.

CS33 Intro to Computer Systems XII–45 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Execute the Function

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

ASum:
pushq %rbp
movq %rsp, %rbp
movq $0, %rcx
movq $0, %rax
movq 16(%rbp), %rdx

loop:
cmpq 24(%rbp), %rcx
jge done
addq (%rdx,%rcx,8), %rax
incq %rcx
ja loop

done:
popq %rbp
ret

return address

rsp

rip

rbp

Recall that when the function was entered, %rsp pointed to the return address (on the
stack). It now points to something that’s 8 bytes below that. Also recall that arguments
to a function are pushed onto the stack in reverse order.

CS33 Intro to Computer Systems XII–46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

Whatʼs at 16(%rbp) (after
the second instruction is
executed)?

a) a local variable
b) the first argument to

ASum
c) the second argument

to ASum
d) something else

ASum:
pushq %rbp
movq %rsp, %rbp
movq $0, %rcx
movq $0, %rax
movq 16(%rbp), %rdx

loop:
cmpq 24(%rbp), %rcx
jge done
addq (%rdx,%rcx,8), %rax
incq %rcx
ja loop

done:
popq %rbp
ret

In preparation for returning to its caller, ASum restores the previous value of %rbp by
popping it off the stack.

CS33 Intro to Computer Systems XII–47 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Prepare to Return

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

ASum:
pushq %rbp
movq %rsp, %rbp
movq $0, %rcx
movq $0, %rax
movq 16(%rbp), %rdx

loop:
cmpq 24(%rbp), %rcx
jge done
addq (%rdx,%rcx,8), %rax
incq %rcx
ja loop

done:
popq %rbp
ret

return address

rsp
rip

rbp

ASum returns by popping the return address off the stack and into %rip, so that
execution resumes in its caller (mainfunc).

CS33 Intro to Computer Systems XII–48 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Return

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

ASum:
pushq %rbp
movq %rsp, %rbp
movq $0, %rcx
movq $0, %rax
movq 16(%rbp), %rdx

loop:
cmpq 24(%rbp), %rcx
jge done
addq (%rdx,%rcx,8), %rax
incq %rcx
ja loop

done:
popq %rbp
ret

return address

rsp

rip

rbp

mainfunc no longer needs the arguments it had pushed onto the stack for ASum, so it
pops them off the stack by adding their total size to %rsp.

CS33 Intro to Computer Systems XII–49 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Pop Arguments

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

mainfunc:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return address

rsp
rip

rbp

The value returned by ASum (in %rax) is copied into the local variable sum (which is in
mainfunc's stack frame).

CS33 Intro to Computer Systems XII–50 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Save Return Value

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

mainfunc:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return address

rsp

rip

rbp

mainfunc is about to return, so it pops its local variables off the stack (by adding their
total size to %rsp).

CS33 Intro to Computer Systems XII–51 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Pop Local Variables

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

mainfunc:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return address

rsp

rip

rbp

In preparation for returning, mainfunc restores its caller's %rbp by popping it off the
stack.

CS33 Intro to Computer Systems XII–52 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Prepare to Return

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

mainfunc:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return address
rsp

rip

rbp

Finally, mainfunc returns by popping its caller's return address off the stack and into
%rip.

CS33 Intro to Computer Systems XII–53 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Return

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

mainfunc:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return addressrsp

rip

ASum modified a number of registers. But suppose its caller was using these registers
and depended on their values' being unchanged?

CS33 Intro to Computer Systems XII–54 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Using Registers

• ASum modifies registers:
– %rsp
– %rbp
– %rcx
– %rax
– %rdx

• Suppose its caller uses
these registers

ASum:
pushq %rbp
movq %rsp, %rbp
movq $0, %rcx
movq $0, %rax
movq 16(%rbp), %rdx

loop:
cmpq 24(%rbp), %rcx
jge done
addq (%rdx,%rcx,8), %rax
incq %rcx
ja loop

done:
popq %rbp
ret

...
movq $33, %rcx
movq $167, %rdx
pushq $6
pushq array
call ASum
assumes unmodified %rcx and %rdx

addq $16, %rsp
addq %rax,%rcx # %rcx was modified!
addq %rdx, %rcx # %rdx was modified!

CS33 Intro to Computer Systems XII–55 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Register Values Across Function Calls

• ASum modifies registers:
– %rsp
– %rbp
– %rcx
– %rax
– %rdx

• May the caller of ASum
depend on its registers
being the same on return?
– ASum saves and restores %rbp

and makes no net changes to
%rsp
» their values are unmodified on

return to its caller
– %rax, %rcx, and %rdx are not

saved and restored
» their values might be different

on return

ASum:
pushq %rbp
movq %rsp, %rbp
movq $0, %rcx
movq $0, %rax
movq 16(%rbp), %rdx

loop:
cmpq 24(%rbp), %rcx
jge done
addq (%rdx,%rcx,8), %rax
incq %rcx
ja loop

done:
popq %rbp
ret

Certain registers are designated as caller-save: if the caller depends on their values
being the same on return as they were before the function was called, it must save and
restore their values. Thus the called function (the "callee"), is free to modify these
registers.

Other registers are designated as callee-save: if the callee function modifies their values,
it must restore them to their original values before returning. Thus the caller may
depend upon their values being unmodified on return from the function call.

CS33 Intro to Computer Systems XII–56 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Register-Saving Conventions
• Caller-save registers

– if the caller wants their values to be the same on
return from function calls, it must save and restore
them
pushq %rcx
call func
popq %rcx

• Callee-save registers
– if the callee wants to use these registers, it must

first save them, then restore their values before
returning

func:
pushq %rbx
movq $6, %rbx
...
popq %rbx

Based on a slide supplied by CMU.

Here is a list of which registers are callee-save, which are caller-save, and which have
special purposes. Note that this is merely a convention and not an inherent aspect of the
x86-64 architecture.

CS33 Intro to Computer Systems XII–57 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

x86-64 General-Purpose Registers:
Usage Conventions

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15Base pointer Callee saved

Callee saved

Callee saved

Callee saved

Caller saved

Callee saved

Stack pointer

Caller Saved

Return value

Caller saved

Caller saved

Caller saved

Caller saved

Caller saved

Caller saved

CS33 Intro to Computer Systems XII–58 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Passing Arguments in Registers

• Observations
– accessing registers is much faster than accessing

primary memory
» if arguments were in registers rather than on the

stack, speed would increase
– most functions have just a few arguments

• Actions
– change calling conventions so that the first six

arguments are passed in registers
» in caller-save registers

– any additional arguments are pushed on the stack

If one gives gcc the –O0 flag (which turns off all optimization) when compiling, the base
pointer (%rbp) will be used as in IA32: it is set to point to the stack frame and the
arguments are copied from the registers into the stack frame. This clearly slows down
the execution of the function, but makes the code easier for humans to read (and was
done for the traps assignment).

CS33 Intro to Computer Systems XII–59 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Why Bother with a Base Pointer?

• It (%rbp) points to the beginning of the stack
frame
– making it easy for people to figure out where things

are in the frame
– but people don’t execute the code ...

• The stack pointer always points somewhere
within the stack frame
– it moves about, but the compiler knows where it is

pointing
» a local variable might be at 8(%rsp) for one

instruction, but at 16(%rsp) for a subsequent one
» tough for people, but easy for the compiler

• Thus the base pointer is superfluous
– it can be used as a general-purpose register

Supplied by CMU.

CS33 Intro to Computer Systems XII–60 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

x86-64 General-Purpose Registers:
Updated Usage Conventions

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15Callee saved Callee saved

Callee saved

Callee saved

Callee saved

Caller saved

Callee saved

Stack pointer

Caller Saved

Return value

Argument #4

Argument #1

Argument #3

Argument #2

Argument #6

Argument #5

Here, again, is the IA32 stack frame. Recall that arguments are at positive offsets from
%ebp, while local variables are at negative offsets.

CS33 Intro to Computer Systems XII–61 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

The IA32 Stack Frame

arg n

arg 1

...

return address
saved frame pointer

saved registers
local variables

%ebp

%esp

The convention used for the x86-64 architecture is that the first 6 arguments to a
function are passed in registers, there is no special frame-pointer register, and
everything on the stack is referred to via offsets from %rsp.

CS33 Intro to Computer Systems XII–62 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

The x86-64 Stack Frame

return address

saved registers
local variables

%rsp

When code is compiled with the –O0 flag on gdb, turning off all optimization, the
compiler uses (unnecessarily) %rbp as a frame pointer so that the offsets to local
variables are constant and thus easier for humans to read. It also copies the arguments
from the registers to the stack frame (at a lower address than what %rbp contains). The
code for the buffer project (to be released on Friday) is compiled with the –O 0 flag.

CS33 Intro to Computer Systems XII–63 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

The -O0 x86-64 Stack Frame (Buffer)

return address
saved frame pointer

saved registers
local variables
copies of args

%rbp

%rsp

CS33 Intro to Computer Systems XII–64 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Summary

• Whatʼs pushed on the stack
– return address
– saved registers

» caller-saved by the caller
» callee-saved by the callee

– local variables
– function parameters

» those too large to be in registers (structs)
» those beyond the six that we have registers for

– large return values (structs)
» caller allocates space on stack
» callee copies return value to that space

Recall that %rbp is a callee-saved register.

CS33 Intro to Computer Systems XII–65 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

Suppose function A is compiled using the
convention that %rbp is used as the base
pointer, pointing to the beginning of the stack
frame. Function B is compiled using the
convention that thereʼs no need for a base
pointer. Will there be any problems if A calls B
or if B calls A?

a) Neither case will work
b) A calling B works, but B calling A doesnʼt
c) B calling A works, but A calling B doesnʼt
d) Both work

