
Many of the slides in this lecture are either from or adapted from slides provided by the
authors of the textbook “Computer Systems: A Programmer’s Perspective,” 2nd Edition
and are provided from the website of Carnegie-Mellon University, course 15-213, taught
by Randy Bryant and David O’Hallaron in Fall 2010. These slides are indicated
“Supplied by CMU” in the notes section of the slides.

CS33 Intro to Computer Systems XVII–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Exploiting Caches

Supplied by CMU.

CS33 Intro to Computer Systems XVII–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Example: Direct Mapped Cache (E = 1)
Direct mapped: one line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

int (4 Bytes) is here

block offset

No match: old line is evicted and replaced

If arrays x and y have the same alignment, i.e., both start in the same cache set, then
each access to an element of y replaces the cache line containing the corresponding
element of x, and vice versa. The result is that the loop is executed very slowly — each
access to either array results in a conflict miss.

CS33 Intro to Computer Systems XVII–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Conflict Misses: Aligned

double dotprod(double x[8], double y[8]) {
double sum = 0.0;
int i;

for (i=0; i<8; i++)
sum += x[i] * y[i];

return sum;
}

32 B = 4 doubles

x0 x1 x2 x3y0 y1 y2 y3x0 x1 x2 x3y0 y1 y2 y3x0 x1 x2 x3y1 y2 y3y0x0 x1 x2 x3y0 y1 y2 y3

However, if the two arrays start in different cache sets, then the loop executes quickly —
there is a cache miss on just every fourth access to each array.

CS33 Intro to Computer Systems XVII–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Different Alignments

double dotprod(double x[8], double y[8]) {
double sum = 0.0;
int i;

for (i=0; i<8; i++)
sum += x[i] * y[i];

return sum;
}

32 B = 4 doubles

x0 x1 x2 x3

y0 y1 y2 y3x4 x5 x6 x7

y4 y5 y6 y7

Supplied by CMU.

CS33 Intro to Computer Systems XVII–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

E-way Set-Associative Cache (Here: E = 2)
E = 2: two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

tag

Supplied by CMU.

CS33 Intro to Computer Systems XVII–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

E-way Set-Associative Cache (Here: E = 2)
E = 2: two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

short int (2 Bytes) is here

No match:
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

CS33 Intro to Computer Systems XVII–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1 100 01 100
Address of int:

8 8 8 9tag=2v 8 999

4 4 4 5tag=0v 4 555

0 0 0 1tag=0v 0 111

c c c dtag=4v c ddd

0

1

2

3

tag=3v

tag=4v

tag=2v

tag=av

2 2 2 32 333

6 6 6 76 777

a a a ba bbb

e e e fe fff

Given the address above and the cache contents as shown,
what is the value of the int at the given address?

a) 1111
b) 3333
c) 4444
d) 7777

Supplied by CMU.

CS33 Intro to Computer Systems XVII–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

2-Way Set-Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1

Supplied by CMU.

CS33 Intro to Computer Systems XVII–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

A Higher-Level Example
int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

32 B = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (j = 0; j < 16; i++)
for (i = 0; i < 16; j++)

sum += a[i][j];
return sum;

}

Ignore the variables sum, i, j

The cache still holds two rows of the matrix, but each row may go into one of two
different cache lines. In the slide, the first row goes into the first lines of the cache sets,
the second row goes into the second lines of the cache sets.

CS33 Intro to Computer Systems XVII–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

A Higher-Level Example

32 B = 4 doubles

Ignore the variables sum, i, j

a0,0 a0,1 a0,2 a0,3

a0,4 a0,5 a0,6 a0,7

a0,8 a0,9 a0,10 a0,11

a0,12 a0,13 a0,14 a0,15

a1,0 a1,1 a1,2 a1,3

a1,4 a1,5 a1,6 a1,7

a1,8 a1,9 a1,10 a1,11

a1,12 a1,13 a1,14 a1,15

int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

int sum_array_cols(double a[16][16])
{

int i, j;
double sum = 0;

for (j = 0; i < 16; i++)
for (i = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

There is still a cache miss on each access.

CS33 Intro to Computer Systems XVII–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

A Higher-Level Example

32 B = 4 doubles

Ignore the variables sum, i, j

a0,0 a0,1 a0,2 a0,3 a1,0 a1,1 a1,2 a1,3a2,0 a2,1 a2,2 a2,3 a3,0 a3,1 a3,2 a3,3

int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

int sum_array_cols(double a[16][16])
{

int i, j;
double sum = 0;

for (j = 0; i < 16; i++)
for (i = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

With a 2-way set-associative cache, our dot-product example runs quickly even if the
two arrays have the same alignment.

CS33 Intro to Computer Systems XVII–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Conflict Misses

double dotprod(double x[8], double y[8]) {
double sum = 0.0;
int i;

for (i=0; i<8; i++)
sum += x[i] * y[i];

return sum;
}

32 B = 4 doubles

x0 x1 x2 x3 y0 y1 y2 y3

x4 x5 x6 x7 y4 y5 y6 y7

Supplied by CMU.

The L3 cache is known as the last-level cache (LLC) in the Intel documentation.

One concern is whether what's contained in, say, the L1 cache is also contained in the
L2 cache. if so, caching is said to be inclusive. If what's contained in the L1 cache is
definitely not contained in the L2 cache, caching is said to be exclusive. An advantage
of exclusive caches is that the total cache capacity is the sum of the sizes of each of the
levels, whereas for inclusive caches, the total capacity is just that of the largest. An
advantage of inclusive caches is that what's been brought into the cache hierarchy by
one core is available to the other cores.

AMD processors tend to have exclusive caches; Intel processors tend to have inclusive
caches.

CS33 Intro to Computer Systems XVII–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Intel Core i5 and i7 Cache Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package
L1 i-cache and d-cache:

32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

Block size: 64 bytes for
all caches

Supplied by CMU.

Most current processors use the write-back/write-allocate approach. This causes some
(surmountable) difficulties for multi-core processors that have a separate cache for each
core.

CS33 Intro to Computer Systems XVII–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

What About Writes?

• Multiple copies of data exist:
– L1, L2, main memory, disk

• What to do on a write-hit?
– write-through (write immediately to memory)
– write-back (defer write to memory until replacement of line)

» need a dirty bit (line different from memory or not)

• What to do on a write-miss?
– write-allocate (load into cache, update line in cache)

» good if more writes to the location follow
– no-write-allocate (writes immediately to memory)

• Typical
– write-through + no-write-allocate
– write-back + write-allocate

This slide describes accessing memory on Intel Core I5 and I7 processors.

If the processor determines that a program is accessing memory sequentially (because
the past few accesses have been sequential), then it begins the load of the next block
from memory before it is requested. If this determination was correct, then the memory
will be in the cache (or well on its way) before it's needed.

CS33 Intro to Computer Systems XVII–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Accessing Memory

• Program references memory (load)
– if not in cache (cache miss), data is requested from

RAM
» fetched in units of 64 bytes

• aligned to 64-byte boundaries (low-order 6 bits of
address are zeroes)

» if memory accessed sequentially, data is pre-fetched
» data stored in cache (in 64-byte cache lines)

• stays there until space must be re-used (least
recently used is kicked out first)

– if in cache (cache hit) no access to RAM needed
• Program modifies memory (store)

– data modified in cache
– eventually written to RAM in 64-byte units

Supplied by CMU.

CS33 Intro to Computer Systems XVII–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Cache Performance Metrics
• Miss rate

– fraction of memory references not found in cache
(misses / accesses)
= 1 – hit rate

– typical numbers (in percentages):
» 3-10% for L1
» can be quite small (e.g., < 1%) for L2, depending on size, etc.

• Hit time
– time to deliver a line in the cache to the processor

» includes time to determine whether the line is in the cache
– typical numbers:

» 1-2 clock cycles for L1
» 5-20 clock cycles for L2

• Miss penalty
– additional time required because of a miss

» typically 50-200 cycles for main memory (trend: increasing!)

Supplied by CMU.

CS33 Intro to Computer Systems XVII–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Hits vs. Misses

• Huge difference between hit and miss times
– could be 100x, if just L1 and main memory

• 99% hit rate is twice as good as 97%!
– consider:

cache hit time of 1 cycle
miss penalty of 100 cycles

– average access time:
97% hits: .97 * 1 cycle + 0.03 * 100 cycles ≈ 4 cycles
99% hits: .99 * 1 cycle + 0.01 * 100 cycles ≈ 2 cycles

• This is why “miss rate” is used instead of “hit
rate”

Supplied by CMU.

CS33 Intro to Computer Systems XVII–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Locality

• Principle of Locality: programs tend to use
data and instructions with addresses near or
equal to those they have used recently

• Temporal locality:
– recently referenced items are likely

to be referenced again in the near future

• Spatial locality:
– items with nearby addresses tend

to be referenced close together in time

Supplied by CMU.

CS33 Intro to Computer Systems XVII–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Locality Example

• Data references
– reference array elements in

succession (stride-1 reference
pattern)

– reference variable sum each iteration
• Instruction references

– reference instructions in sequence.
– cycle through loop repeatedly

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality

Temporal locality

Spatial locality
Temporal locality

Supplied by CMU.

CS33 Intro to Computer Systems XVII–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

Does this function have good locality with
respect to array a? The array a is MxN.

a) yes
b) no

int sum_array_cols(int N, int a[][N]) {
int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

Supplied by CMU.

“Stride n” reference patterns are sequences of memory accesses in which every nth
element is accessed in memory order. Thus stride 1 means that every element is
accessed, starting at the beginning of a memory area, continuing to its end.

CS33 Intro to Computer Systems XVII–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Writing Cache-Friendly Code

• Make the common case fast
– focus on the inner loops of the core functions

• Minimize the misses in the inner loops
– repeated references to variables are good (temporal locality)
– stride-1 reference patterns are good (spatial locality)

Based on slides supplied by CMU.

CS33 Intro to Computer Systems XVII–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Matrix Multiplication Example

• Description:
– multiply N x N

matrices
» each element is a

double
– O(N3) total operations
– N reads per source

element
– N values summed per

destination
» but may be able to

hold in register

/* ijk */
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}

}

Variable sum
held in register

/* ikj */
for (i=0; i<n; i++) {
for (k=0; k<n; k++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

Adapted form a slide by CMU.

CS33 Intro to Computer Systems XVII–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Miss-Rate Analysis for Matrix Multiply

• Assume:
– Block size = 64B (big enough for eight doubles)
– matrix dimension (N) is very large
– cache is not big enough to hold multiple rows

• Analysis method:
– look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= *

Supplied by CMU.

CS33 Intro to Computer Systems XVII–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Layout of C Arrays in Memory (review)

• C arrays allocated in row-major order
– each row in contiguous memory locations

• Stepping through columns in one row:
– for (i = 0; i < N; i++)

sum += a[0][i];

– accesses successive elements
– if block size (B) > 8 bytes, exploit spatial locality

» compulsory miss rate = 8 bytes / Block
• Stepping through rows in one column:

– for (i = 0; i < n; i++)
sum += a[i][0];

– accesses widely separated elements
– no spatial locality!

» compulsory miss rate = 1 (i.e. 100%)

Supplied by CMU.

Assume we are multiplying arrays of doubles, thus each element is eight bytes long, and
thus a cache line holds eight matrix elements. The slide shows a straightforward
implementation of multiplying A and B to produce C.

CS33 Intro to Computer Systems XVII–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}

}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per inner loop iteration:
A B C

0.125 1.0 0.0

Supplied by CMU.

If we reverse the order of the two outer loops, there's no change in results or
performance.

CS33 Intro to Computer Systems XVII–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum
}

}

A B C
(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
A B C

0.125 1.0 0.0

Supplied by CMU.

Moving the loop on k to be the outer loop does not affect the result, but it improves
performance.

CS33 Intro to Computer Systems XVII–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C

0.0 0.125 0.125

Supplied by CMU.

Switching the two outer loops affects neither results nor performance.

CS33 Intro to Computer Systems XVII–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
for (k=0; k<n; k++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}

A B C
(i,*)

(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C

0.0 0.125 0.125

Supplied by CMU.

Moving the loop on i to be the inner loop makes performance considerably worse.

CS33 Intro to Computer Systems XVII–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

Supplied by CMU.

The poor performance is not improved by reversing the outer loops.

CS33 Intro to Computer Systems XVII–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {
for (j=0; j<n; j++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

Supplied by CMU.

CS33 Intro to Computer Systems XVII–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Summary of Matrix Multiplication

ijk (& jik):
• 2 loads, 0 stores
• misses/iter = 1.125

kij (& ikj):
• 2 loads, 1 store
• misses/iter = 0.25

jki (& kji):
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++)

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

for (k=0; k<n; k++)

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

for (j=0; j<n; j++)

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

Supplied by CMU.

CS33 Intro to Computer Systems XVII–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Core i7 Matrix Multiply Performance

0

10

20

30

40

50

60

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Cy
cl

es
 p

er
 in

ne
r l

oo
p

ite
ra

tio
n

Array size (n)

jki
kji
ijk
jik
kij
ikj

jki / kji

ijk / jik

kij / ikj

CS33 Intro to Computer Systems XVII–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

In Real Life ...

• Multiply two 1024x1024 matrices of doubles
on sunlab machines

– ijk
» 4.185 seconds

– kij
» 0.798 seconds

– jki
» 11.488 seconds

Supplied by CMU.

CS33 Intro to Computer Systems XVII–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Concluding Observations

• Programmer can optimize for cache
performance
– organize data structures appropriately

• All systems favor “cache-friendly code”
– getting absolute optimum performance is very

platform specific
» cache sizes, line sizes, associativities, etc.

– can get most of the advantage with generic code
» keep working set reasonably small (temporal locality)
» use small strides (spatial locality)

CS33 Intro to Computer Systems XVII–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Architecture and the OS

CS33 Intro to Computer Systems XVII–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

The Operating System

OS

My Program Mary’s
Program

Bob’s
Program

CS33 Intro to Computer Systems XVII–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Processes

• Containers for programs
– virtual memory

» address space
– scheduling

» one or more threads of control
– file references

» open files
– and lots more!

CS33 Intro to Computer Systems XVII–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Idiot Proof …

My Program Mary’s
Program

int main() {
int i;
int A[1];

for (i=0; ; i++)
A[rand()] = i;

}

Can I clobber
Mary’s
program?

CS33 Intro to Computer Systems XVII–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Fair Share

My Program Bob’s
Program

void runforever(){
while(1)
;

}

int main() {
runforever();

}

Can I
prevent Bob’s
program from
running?

CS33 Intro to Computer Systems XVII–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Architectural Support for the OS

• Not all instructions are created equal ...
– non-privileged instructions

» can affect only current program
– privileged instructions

» may affect entire system

• Processor mode
– user mode

» can execute only non-privileged instructions
– privileged mode

» can execute all instructions

CS33 Intro to Computer Systems XVII–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Which Instructions Should Be
Privileged?

• I/O instructions
• Those that affect how memory is mapped
• Halt instruction
• Some others ...

CS33 Intro to Computer Systems XVII–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Who Is Privileged?

• No one
– user code always runs in user mode

• The operating-system kernel runs in
privileged mode
– nothing else does
– not even super user on Unix or administrator on

Windows

CS33 Intro to Computer Systems XVII–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Entering Privileged Mode

• How is OS invoked?
– very carefully ...
– strictly in response to interrupts and exceptions
– (booting is a special case)

CS33 Intro to Computer Systems XVII–44 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Interrupts and Exceptions

• Things don’t always go smoothly ...
– I/O devices demand attention
– timers expire
– programs demand OS services
– programs demand storage be made accessible
– programs have problems

• Interrupts
– demand for attention by external sources

• Exceptions
– executing program requires attention

These definitions follow those given in “Intel® 64 and IA-32 Architectures Software
Developer’s Manual” and are generally accepted even outside of Intel.

CS33 Intro to Computer Systems XVII–45 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Exceptions

• Traps
– “intentional” exceptions

» execution of special instruction to invoke OS
– after servicing, execution resumes with next

instruction
• Faults

– a problem condition that is normally corrected
– after servicing, instruction is re-tried

• Aborts
– something went dreadfully wrong ...
– not possible to re-try instruction, nor to go on to

next instruction

CS33 Intro to Computer Systems XVII–46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Actions for Interrupts and Exceptions

• When interrupt or exception occurs
– processor saves state of current thread/process on

stack
– processor switches to privileged mode (if not

already there)
– invokes handler for interrupt/exception
– if thread/process is to be resumed (typical action

after interrupt)
» thread/process state is restored from stack

– if thread/process is to re-execute current
instruction
» thread/process state is restored, after backing up

instruction pointer
– if thread/process is to terminate

» it’s terminated

CS33 Intro to Computer Systems XVII–47 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Interrupt and Exception Handlers

• Interrupt or exception
invokes handler (in OS)
– via interrupt and exception

vector
» one entry for each possible

interrupt/exception
• contains

–address of handler
– code executed in privileged

mode
» but code is part of the OS

handler 0 addr
handler 1 addr
handler 2 addr

...

handler n-1 addr

handler i addr

...

intrpt/excp
i

handler i

The reason why there must be a separate stack in privileged mode is that the OS must
be guaranteed that when it is executing, it has a valid stack, that the stack pointer must
be pointing to a region of memory that can be used as a stack by the OS. Since while the
program was running in user mode any value could have been put into the stack-pointer
register, when the OS is invoked, it switches to a pre-allocated stack set up just for it.

CS33 Intro to Computer Systems XVII–48 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Entering and Exiting

• Entering/exiting interrupt/exception handler
more involved than entering/exiting a
procedure
– must deal with processor mode

» switch to privileged mode on entry
» switch back to previous mode on exit

– interrupted process/threadʼs state is saved on
separate kernel stack

– stack in kernel must be different from stack in user
program
» why?

When a trap or interrupt occurs, the current processor state (registers, including RIP,
condition codes, etc.) are saved on the kernel stack. When the system returns back to
the interrupted program, this state is restored.

CS33 Intro to Computer Systems XVII–49 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

One Stack Per Mode

Frame 1

Frame 2

Frame 3

Intrp/Excp
Frame

Frame 4

Frame 5

user stack kernel stack

CS33 Intro to Computer Systems XVII–50 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 3

If an interrupt occurs, which general-purpose
registers must be pushed onto the kernel
stack?

a) all
b) none
c) callee-save registers
d) caller-save registers

