
CS33 Intro to Computer Systems XVI–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Architecture and the OS (2)

CS33 Intro to Computer Systems XVI–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Creating Your Own Processes

#include <unistd.h>

int main() {
pid_t pid;
if ((pid = fork()) == 0) {

/* new process starts
running here */

}
/* old process continues

here */
}

The only way to create a new process is to use the fork system call.

CS33 Intro to Computer Systems XVI–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Creating a Process: Before

fork()

parent process

By executing fork the parent process creates an almost exact clone of itself that we call
the child process. This new process executes the same text as its parent, but contains a
copy of the data and a copy of the stack. This copying of the parent to create the child
can be very time-consuming if done naively. Some tricks are employed to make it much
less so.

Fork is a very unusual system call: one thread of control flows into it but two threads of
control flow out of it, each in a separate address space. From the parent’s point of view,
fork does very little: nothing happens to the parent except that fork returns the process
ID (PID — an integer) of the new process. The new process starts off life by returning
from fork, which it sees as returning a zero.

CS33 Intro to Computer Systems XVI–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Creating a Process: After

fork()
// returns p

parent process

fork()
// returns 0

child process
(pid = p)

CS33 Intro to Computer Systems XVI–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1
The following program

a) runs forever
b) terminates quickly

int flag;
int main() {
while (flag == 0) {
if (fork() == 0) {
// in child process

flag = 1;
exit(0); // causes process to terminate

}
}

}

The getpid function returns the caller’s process ID.

The parent process executes the second printf; the child process executes the
first printf.

CS33 Intro to Computer Systems XVI–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Process IDs

int main() {
pid_t pid;
pid_t ParentPid = getpid();

if ((pid = fork()) == 0) {
printf("%d, %d, %d\n",

pid, ParentPid, getpid());
return 0;

}
printf("%d, %d, %d\n",

pid, ParentPid, getpid());
return 0;

}

parent prints:
27355, 27342, 27342

child prints:
0, 27342, 27355

CS33 Intro to Computer Systems XVI–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

.

.

.

.

.

.

if (fork() == 0){
execv("prog",
argv);

}

.

.

.

/* prog */

int main() {

}

Putting Programs into Processes

if (fork() == 0){
execv("prog", argv);

}

.

.

.

.

.

.

fork

execv

We will use the convention that the name of the program, as given in argv[0] is
the last component of the file’s pathname.

Note that a null pointer, termed a sentinel, is used to indicate the end of the
list of arguments.

CS33 Intro to Computer Systems XVI–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Exec

• Family of related system functions
– we concentrate on one:

» execv(program, argv)

char *argv[] = {"MyProg", "12", (void *)0};
if (fork() == 0) {
execv("./MyProg", argv);

}

argv[0] is the name
of the program

Name of the file that
contains the program

First “real”
argument

End of
list

Most of the time the purpose of creating a new process is to run a new (i.e., different)
program. Once a new process has been created, it can use one of the exec system calls
to load a new program image into itself, replacing the prior contents of the process’s
address space. Exec is passed the name of a file containing an executable program
image. The previous text region of the process is replaced with the text of the program
image. The data, BSS and dynamic areas of the process are “thrown away” and replaced
with the data and BSS of the program image. The contents of the process’s stack are
replaced with the arguments that are passed to the main procedure of the program.

CS33 Intro to Computer Systems XVI–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Loading a New Image

execv(prog, argv)

Before

prog’s text

prog’s data

prog’s bss

args

After

The argument argv is what was provided to execv. The argument argc is the
number of elements of argv (i.e., the number of arguments, including argv[0]).

CS33 Intro to Computer Systems XVI–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

A Random Program …

int main(int argc, char *argv[]) {
if (argc != 2) {

fprintf(stderr, "Usage: random count\n");
exit(1);

}
int stop = atoi(argv[1]);
for (int i = 0; i < stop; i++)
printf("%d\n", rand());

return 0;

}

CS33 Intro to Computer Systems XVI–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Passing It Arguments

• From the shell
$ random 12

• From a C program
if (fork() == 0) {
char *argv[] = {"random", "12", (void *)0};
execv("./random", argv);

}

CS33 Intro to Computer Systems XVI–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2
if (fork() == 0) {
char *argv[] = {"random", "12", (void *)0};

execv("./random", argv);
printf("random done\n");

}
The printf statement will be
executed

a) only if execv fails
b) only if execv succeeds
c) always

Note that argv[0] is the name by which the program is invoked. argv[1] is the
first “real” argument. In this program, argv[2] will contain the NULL pointer (0).
arrgc is two, indicating two arguments (argv[0] and argv[1]).

CS33 Intro to Computer Systems XVI–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Receiving Arguments
int main(int argc, char *argv[]) {
if (argc != 2) {
fprintf(stderr, "Usage: random count\n");
exit(1);

}
int stop = atoi(argv[1]);
for (int i = 0; i < stop; i++)
printf("%d\n", rand());

return 0;
}

1 2 \0

r a n d o m \0

argv

CS33 Intro to Computer Systems XVI–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Not So Fast …

• How does the shell invoke your program?

if (fork() == 0) {
char *argv = {"random", "12", (void *)0};
execv("./random", argv);

}
/* what does the shell do here??? */

There’s a variant of waitpid, called wait, that waits for any child of the current
process to terminate.

CS33 Intro to Computer Systems XVI–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Wait

#include <unistd.h>
#include <sys/wait.h>

…
pid_t pid;
int status;
…
if ((pid = fork()) == 0) {

char *argv[] = {"random", "12", (void *)0};
execv("./random", argv);

}
waitpid(pid, &status, 0);

The exit code is used to indicate problems that might have occurred while
running a program. The convention is that an exit code of 0 means success;
other values indicate some sort of error. Note that if the main function returns,
it returns to code that calls exit; thus, returning from main is equivalent to
calling exit. The argument passed to exit in this case is the value returned by
main.

CS33 Intro to Computer Systems XVI–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Exit
#include <unistd.h>
#include <stdlib.h>
#include <sys/wait.h>
int main() {
pid_t pid;
int status;
if ((pid = fork()) == 0) {
if (do_work() == 1)
exit(0); /* success! */

else
exit(1); /* failure … */

}
waitpid(pid, &status, 0);
/* low-order byte of status contains exit code.

WEXITSTATUS(status) extracts it */

exit code

CS33 Intro to Computer Systems XVI–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Shell: To Wait or Not To Wait ...
$ who

if ((pid = fork()) == 0) {

char *argv[] = {"who", 0};
execv("who", argv);

}
waitpid(pid, &status, 0);
…

$ who &
if ((pid = fork()) == 0) {

char *argv[] = {"who", 0};
execv("who", argv);

}
…

System calls, such as fork, execv, read, write, etc., are the only means for application
programs to communicate directly with the OS kernel: they form an API (application
program interface) to the kernel. When a program calls such a function, it is actually
placing a call to a function in a system library. The body of this function contains a
hardware-specific trap instruction that transfers control and some parameters to the
kernel. On return to the library function, the kernel provides an indication of whether or
not there was an error and what the error was. The error indication is passed back to
the original caller via the functional return value of the library function: If there was an
error, the function returns -1 and a positive-integer code identifying the error is stored
in the global variable errno. Rather than simply print this code out, as shown in the
slide, one might instead print out an informative error message. This can be done via the
perror function.

The “hardware-specific trap instruction” is (or used to be) the “int” (interrupt) instruction
on the x86. However, this instruction is now considered too expensive for such
performance-critical operations as system calls. A new facility, known as “syscall/sysret”
was introduced with the Pentium II processors (in 1997) and has been used by operating
systems (including Windows and Linux) ever since. Its description is beyond the scope of
this course.

CS33 Intro to Computer Systems XVI–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

System Calls

• Sole direct interface between user and kernel
• Implemented as library functions that execute trap

instructions to enter kernel
• Errors indicated by returns of –1; error code is in

global variable errno

if (write(fd, buffer, bufsize) == –1) {
// error!
printf("error %d\n", errno);
// see perror

}

CS33 Intro to Computer Systems XVI–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

System Calls

write(fd, buf, len)

kernel text

other stuff
kernel stack

trap into kernel User portion
of address
space

Kernel portion
of address
space

Each process has its own user address space, but there’s a single kernel address space.
It contains context information for each user process, including the stacks used by each
process when executing system calls.

CS33 Intro to Computer Systems XVI–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

kernel data

other stuff
kernel stack

other stuff
kernel stack

other stuff
kernel stack

Multiple Processes

kernel text

CS33 Intro to Computer Systems XVI–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Shells and Files

This information is from Wikipedia.

CS33 Intro to Computer Systems XVI–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Shells

• Command and scripting languages for Unix
• First shell: Thompson shell

– sh, developed by Ken Thompson
– released in 1971

• Bourne shell
– also sh, developed by Steve Bourne
– released in 1977

• C shell
– csh, developed by Bill Joy
– released in 1978
– tcsh, improved version by Ken Greer

This information is also from Wikipedia.

CS Department computers run Debian Linux (and thus weren't affected by shellshock).

Our examples use bash syntax.

CS33 Intro to Computer Systems XVI–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

More Shells

• Bourne-Again Shell
– bash, developed by Brian Fox
– released in 1989
– found to have a serious security-related bug in 2014

» shellshock
• Almquist Shell

– ash, developed by Kenneth Almquist
– released in 1989
– similar to bash
– dash (debian ash) used for scripts in Debian Linux

» faster than bash
» less susceptible to shellshock vulnerability

CS33 Intro to Computer Systems XVI–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Roadmap

• We explore the file abstraction
– what are files
– how do you use them
– how does the OS represent them

• We explore the shell
– how does it launch programs
– how does it connect programs with files
– how does it control running programs

shell 1

shell 2

Most programs perform file I/O using library code layered on top of system calls. In this
section we discuss just the kernel aspects of file I/O, looking at the abstraction and the
high-level aspects of how this abstraction is implemented.

The Unix file abstraction is very simple: files are simply arrays of bytes. Some systems
have special system calls to make a file larger. In Unix, you simply write where you’ve
never written before, and the file “magically” grows to the new size (within limits). The
names of files are equally straightforward — just the names labeling the path that leads
to the file within the directory tree. Finally, from the programmer’s point of view, all
operations on files appear to be synchronous — when an I/O system call returns, as far
as the process is concerned, the I/O has completed. (Things are different from the
kernel’s point of view.) Another important property of files is permanence: they continue
to exist until explicitly deleted.

Note that there are numerous issues in implementing the Unix file abstraction that we
do not cover in this course. In particular, we do not discuss what is done to lay out files
on disks (both rotating and solid-state) so as to take maximum advantage of their
architectures. Nor do we discuss the issues that arise in coping with failures and
crashes. What we concentrate on here are those aspects of the file abstraction that are
immediately relevant to application programs.

CS33 Intro to Computer Systems XVI–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

The File Abstraction

• A file is a simple array of bytes
• A file is made larger by writing beyond its

current end
• Files are named by paths in a naming tree
• System calls on files are synchronous
• Files are permanent

The notion that almost everything in Unix has a path name was a startlingly new
concept when Unix was first developed; one that has proved to be important. We discuss
this in more detail in the next lecture.

CS33 Intro to Computer Systems XVI–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Naming

• (almost) everything has a path name
– files
– directories
– devices (known as special files)

» keyboards
» displays
» disks
» etc.

Given the name of a file, one uses open to get a file descriptor that will refer to that file
when performing operations on it. One calls close to tell the system one is no longer
using that file descriptor. The read and write system calls perform the indicated
operation on the file, using a buffer described by their second two arguments. By
default, read and write operations go through a file from beginning to end sequentially.
The lseek system call is used to specify where in a file the next read or write will take
place.

ssize_t (“signed size”) is a typedef for long and represents the number of bytes that were
transferred. It’s signed so as to allow -1 as a return value, which indicates an error. off_t
is also a typedef for long and represents an offset from some position in the file (the
starting position is given by the whence argument to lseek).

CS33 Intro to Computer Systems XVI–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

I/O System Calls

• int file_descriptor = open(pathname,
mode [, permissions])

• int close(file_descriptor)
• ssize_t count = read(file_descriptor,
buffer_address, buffer_size)

• ssize_t count = write(file_descriptor,
buffer_address, buffer_size)

• off_t position = lseek(file_descriptor,
offset, whence)

The file descriptors 0, 1, and 2 are set up before a process starts. File descriptor 0 refers
to input (the keyboard, by default). Descriptors 1 and 2 are for output: normal output
goes to file descriptor 1, error messages go to file descriptor 2. By default, this output
goes to the current window.

We’ll soon see a way to print more informative error messages than the one given here.

CS33 Intro to Computer Systems XVI–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Standard File Descriptors

int main() {
char buf[BUFSIZE];
int n;
const char *note = "Write failed\n";

while ((n = read(0, buf, sizeof(buf))) > 0)
if (write(1, buf, n) != n) {

write(2, note, strlen(note));
exit(1);

}
return(0);

}

C programs often do I/O via the standard I/O library (known as stdio), which provides
both buffering and formatting.

CS33 Intro to Computer Systems XVI–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Standard I/O Library

Formatting

Buffering stdin stdout stderr

Syscalls fd 0 fd 1 fd 2

…

…

printf scanf…

The streams stdin, stdout, and stderr are automatically set up to refer to data from/to
file descriptors 0, 1, and 2, respectively.

CS33 Intro to Computer Systems XVI–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Standard I/O

FILE *stdin; // declared in stdio.h
FILE *stdout; // declared in stdio.h

FILE *stderr; // declared in stdio.h

scanf("%d", &in); // read via f.d. 0
printf("%d\n", in); // write via f.d. 1
fprintf(stderr, "there was an error\n");

// write via f.d. 2

The stdout stream is buffered. This means that characters written to stdout are copied
into a buffer. Only when either a newline is output or the capacity of the buffer is
reached are the characters actually written to the display (via a call to write). The reason
for doing things this way is to reduce the number of (relatively expensive) calls to write.

CS33 Intro to Computer Systems XVI–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Buffered Output

x y z z y \n

printf("xy");

printf("zz");

printf("y\n");

buffer

display
x y z z y

The stderr stream is not buffered. Thus characters output to it are immediately written
to the display.

CS33 Intro to Computer Systems XVI–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Unbuffered Output
fprintf(stderr, "xy");

fprintf(stderr, "zz");

fprintf(stderr, "y\n");

display
x y z z y

This is the code for the program echon, which we’ll be using as an example in the
upcoming slides.

The fgets function reads from the file stream given by its third argument and puts the
data read into the buffer pointed to by its first argument. It stops reading data
immediately after reading in a '\n' or after reading the number of bytes given as its
second argument, whichever comes first. Note that the '\n' is copied into the buffer.
(fgets is what programs should use rather than gets, as we saw when we discussed
buffer-overflow attacks.) The fputs function writes its first argument to the file stream
given by the second argument.

CS33 Intro to Computer Systems XVI–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

A Program
int main(int argc, char *argv[]) {
if (argc != 2) {
fprintf(stderr, "Usage: echon reps\n");
exit(1);

}
int reps = atoi(argv[1]);
if (reps > 2) {
fprintf(stderr, "reps too large, reduced to 2\n");
reps = 2;

}
char buf[256];
while (fgets(buf, 256, stdin) != NULL)
for (int i=0; i<reps; i++)
fputs(buf, stdout);

return(0);
}

Our shell examples are all in bash. The slide shows how, via the shell, we can change
what stdout and stdin are. We'll soon see how we can do so for stderr.

CS33 Intro to Computer Systems XVI–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

From the Shell ...

$ echon 1
– stdout (fd 1) and stderr (fd 2) go to the display
– stdin (fd 0) comes from the keyboard

$ echon 1 > Output
– stdout goes to the file “Output” in the current

directory
– stderr goes to the display
– stdin comes from the keyboard

$ echon 1 < Input
– stdin comes from the file “Input” in the current

directory

Here we arrange so that file descriptor 1 (standard output) refers to /home/twd/Output. As we
discuss soon, if open succeeds, the file descriptor it assigns is the lowest-numbered one available.
Thus if file descriptors 0, 1, and 2 are unavailable (because they correspond to standard input,
standard output and standard error), then if file descriptor 1 is closed, it becomes the lowest-
numbered available file descriptor. Thus the call to open, if it succeeds, returns 1.

By setting the second argument of waitpid to 0, we're ignoring the exit status.

Note the use of perror. It's declared in stdio.h and is used for printing error messages after a
system call fails (returning -1). As we saw in the previous lecture, when a system call fails, in
addition to returning -1 it puts the failure code in the global variable errno. The function perror
uses the value in errno to index into an array of error messages and prints (to stderr) its argument
followed by the text of the error message.

Note that it's used only for system calls, such as open, close, read, write, fork, and execv. It doesn't
give correct results for functions that aren't system calls, such as printf. A function is a system call
if its description is in section 2 of the online unix manual. Thus, for system calls, typing, for
example, "man 2 open", results in a description of the open system call. Typing "man 2 printf"
results in an error message, since printf is not a system call, but a function supplied by the stdio
library.

In many cases typing "man <function_name>" (without specifying a section number) gives you the
correct man page for that function, but some function names are ambiguous. For example, printf
is both a shell command (which is documented in section 1 of the unix manual) and a function in
the stdio library (which is documented in section 3). To see the man page for the stdio library
function printf, one should type "man 3 printf".

CS33 Intro to Computer Systems XVI–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Redirecting Stdout in C
if ((pid = fork()) == 0) {

/* set up file descriptor 1 in the child process */
close(1);
if (open("/home/twd/Output", O_WRONLY) == -1) {

perror("/home/twd/Output");
exit(1);

}
char *argv[] = {"echon", "2", NULL};
execv("/home/twd/bin/echon", argv);
exit(1);

}

/* parent continues here */

waitpid(pid, 0, 0); // wait for child to terminate

The file-descriptor table resides in the operating-system kernel; there’s one for each
process. Its entries are indexed by file descriptors; thus file descriptor 0 refers to the
first entry, file descriptor 1 refers to the second entry, etc. Each entry in the table refers
to a file context structure, as shown in the slide. This contains:

• a reference count, whose use we will see shortly

• an access mode, which specifies how the file was opened and thus how the process
may use the file (e.g., read-only or read-write)

• the file location, which is the byte offset into the file where the next operation will
take place

• the inode pointer, which is a data structure the OS provides for each file providing
detailed information about the file, including where it is on disk. It normally resides
on disk, but his brought into kernel memory when needed

CS33 Intro to Computer Systems XVI–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

File-Descriptor Table

0
1
2
3

.

.

.

n–1

File-descriptor
table

File
descriptor

User
address space

Kernel address space

ref
count

access
mode

file
location

inode
pointer

File context structure

The file-location field in the context structure indicates the offset into the file at which
the next read or write operation will take place. It’s normally set to 0 by OS when the file
is opened (one can also have it set to the offset of the end of the file by setting the
O_APPEND flag in open).

CS33 Intro to Computer Systems XVI–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

File Location

0
1
2
3

.

.

.

n–1

File-descriptor
table

File
descriptor

User
address space

Kernel address space

1 WRONLY 0 inode
pointer

File context structure

After reading or writing n bytes to a file, its file-location value is incremented by n. Thus,
by default, I/O to files is sequential.

CS33 Intro to Computer Systems XVI–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

File Location

0
1
2
3

.

.

.

n–1

File-descriptor
table

File
descriptor

User
address space

Kernel address space

1 WRONLY 4 inode
pointer

File context structure
write(5, "abc", 4);

One can set the file location by using the lseek system call. Setting it will affect where
the next read or write takes place. If the third argument is SEEK_SET, the offset given in
the second argument is treated as an offset from the beginning of the file. If it’s
SEEK_CUR, it’s treated as an offset from the current position in the file. If it’s
SEEK_END, it’s treated as an offset from the end of the file.

If one sets the offset to well beyond the end of the file and then writes to the file at that
position, leaving a “gap”, this gap, when read, is treated as if it contains zeroes.

CS33 Intro to Computer Systems XVI–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

File Location

0
1
2
3

.

.

.

n–1

File-descriptor
table

File
descriptor

User
address space

Kernel address space

1 WRONLY 12 inode
pointer

File context structure
lseek(5, 12,

SEEK_SET);

One can depend on always getting the lowest available file descriptor.

CS33 Intro to Computer Systems XVI–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Allocation of File Descriptors

• Whenever a process requests a new file
descriptor, the lowest-numbered file
descriptor not already associated with an
open file is selected; thus

#include <fcntl.h>
#include <unistd.h>

close(0);
fd = open("file", O_RDONLY);

– will always associate file with file descriptor 0
(assuming that open succeeds)

This redirects both standard output and standard error to be the file
/home/twd/Output.

CS33 Intro to Computer Systems XVI–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Redirecting Output … Twice
if (fork() == 0) {

/* set up file descriptors 1 and 2 in the child process */
close(1);
close(2);
if (open("/home/twd/Output", O_WRONLY) == -1) {

exit(1);
}
if (open("/home/twd/Output", O_WRONLY) == -1) {

exit(1);
}
char *argv[] = {"echon", 2, NULL};
execv("/home/twd/bin/echon", argv);
exit(1);

}
/* parent continues here */

This is the syntax used in bash (which is how it was done on the Bourne shell). Other
shells have different syntaxes for this.

CS33 Intro to Computer Systems XVI–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

From the Shell ...

$ echon 1 >Output 2>Output
– both stdout and stderr go to Output file

After opening the Output file twice, the file-descriptor table appears as shown in the
slide.

CS33 Intro to Computer Systems XVI–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Redirected Output

File-descriptor
table

File descriptor 1

User
address space

Kernel address space

File descriptor 2

1 WRONLY 0 inode
pointer

1 WRONLY 0 inode
pointer

There is a potential problem here. Since our file (/home/twd/Output) has been opened
once for each file descriptor, when a write (in this case of 100 bytes) is done through file
descriptor 1, the file location field in its context is incremented by 100, but not that in
the other context. Thus, a subsequent write via file descriptor 2 would overwrite what
was just written via file descriptor 1.

CS33 Intro to Computer Systems XVI–44 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Redirected Output After Write

File-descriptor
table

File descriptor 1

User
address space

Kernel address space

File descriptor 2

1 WRONLY 100 inode
pointer

1 WRONLY 0 inode
pointer

Note that the actual input consists of X followed by a newline character.

Recall that echon will first write "reps too large, reduced to 2" to file descriptor 2, then
write "x\nx\n" to file descriptor 1,

CS33 Intro to Computer Systems XVI–45 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 3

• Suppose we run
$ echon 3 >Output 2>Output

• The input line is
X

• What is the final content of Output?

a) reps too large, reduced to 2\nX\nX\n

b) X\nX\nreps too large, reduced to 2\n
c) X\nX\n too large, reduced to 2\n

CS33 Intro to Computer Systems XVI–46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Sharing Context Information

if (fork() == 0) {
/* set up file descriptors 1 and 2 in the child process */
close(1);
close(2);
if (open("/home/twd/Output", O_WRONLY) == -1) {

exit(1);
}
dup(1); /* set up file descriptor 2 as a duplicate of 1 */
char *argv[] = {"echon", 2};
execv("/home/twd/bin/echon", argv);
exit(1);

}
/* parent continues here */

Here we have one file context structure shared by both file descriptors, so an update to
the file location field done via one file descriptor affects the other as well.

CS33 Intro to Computer Systems XVI–47 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Redirected Output After Dup

File-descriptor
table

File descriptor 1

User
address space

Kernel address space

File descriptor 2

2 WRONLY 100 inode
pointer

CS33 Intro to Computer Systems XVI–48 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

From the Shell ...

$ echon 3 >Output 2>&1
– stdout goes to Output file, stderr is the dup of fd 1

– with input “X\n” it now produces in Output:

reps too large, reduced to 2\nX\nX\n

Here we have a log into which important information should be appended by each of our
processes. To make sure that each write goes to the current end of the file, it’s desirable
that the “logfile” file descriptor in each process refer to the same shared file context
structure. As it turns out, this does indeed happen: after a fork, the file descriptors in
the child process refer to the same file context structures as they did in the parent.

CS33 Intro to Computer Systems XVI–49 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Fork and File Descriptors

int logfile = open("log", O_WRONLY);
if (fork() == 0) {

/* child process computes something, then does: */
write(logfile, LogEntry, strlen(LogEntry));
…
exit(0);

}

/* parent process computes something, then does: */

write(logfile, LogEntry, strlen(LogEntry));
…

Note that after a fork, the reference counts in the file context structures are incremented
to account for the new references by the child process.

CS33 Intro to Computer Systems XVI–50 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

File Descriptors After Fork

logfile

Parent’s
address space

Kernel address space

2 WRONLY 0 inode
pointer

logfile

Child’s
address space

Unix guarantees that writes are atomic, which means they effectively happen
instantaneously. Thus, if two occur at about the same time, the effect is as if one
completes before the other starts.

CS33 Intro to Computer Systems XVI–51 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 4
int main() {

if (fork() == 0) {
fprintf(stderr, "Child");
exit(0);

}
fprintf(stderr, "Parent");

}

Suppose the program is run as:
$ prog >file 2>&1

What is the final content of file? (Assume writes are “atomic”.)
a) either “Childt” or “Parent”
b) either “Child” or “Parent”
c) either “ChildParent” or “ParentChild”

