
CS33 Intro to Computer Systems XX–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Files Part 3

Each file has associated with it a set of access permissions indicating, for each of three
classes of principals, what sorts of operations on the file are allowed. The three classes
are the owner of the file, known as user, the group owner of the file, known simply as
group, and everyone else, known as others. The operations are grouped into the classes
read, write, and execute, with their obvious meanings. The access permissions apply to
directories as well as to ordinary files, though the meaning of execute for directories is
not quite so obvious: one must have execute permission for a directory file in order to
follow a path through it.

The system, when checking permissions, first determines the smallest class of principals
the requester belongs to: user (smallest), group, or others (largest). It then, within the
chosen class, checks for appropriate permissions.

CS33 Intro to Computer Systems XX–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

File Access Permissions

• Who’s allowed to do what?
– who

» user (owner)
» group
» others (rest of the world)

– what
» read
» write
» execute

The ls –lR command lists the contents of the current directory, its subdirectories,
their subdirectories, etc. in long format (the l causes the latter, the R the former).
In the current directory are two subdirectories, A and B, with access permissions as
shown in the slide. Note that the permissions are given as a string of characters: the
first character indicates whether or not the file is a directory, the next three characters
are the permissions for the owner of the file, the next three are the permissions for the
members of the file’s group’s members, and the last three are the permissions for the
rest of the world.
Quiz: the users joe and angie are members of the adm group; leo is not.

• May leo list the contents of directory A?

• May leo read A/x?

• May angie list the contents of directory B?

• May angiemodify B/y?

• May joemodify B/x?

• May joe read B/y?

CS33 Intro to Computer Systems XX–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Permissions Example

$ ls -lR
.:
total 2
drwxr-x--x 2 joe adm 1024 Dec 17 13:34 A
drwxr----- 2 joe adm 1024 Dec 17 13:34 B

./A:
total 1
-rw-rw-rw- 1 joe adm 593 Dec 17 13:34 x

./B:
total 2
-r--rw-rw- 1 joe adm 446 Dec 17 13:34 x
-rw----rw- 1 angie adm 446 Dec 17 13:45 y

adm group:
joe, angie

The chmod system call (and the similar chmod shell command) is used to change the
permissions of a file. Note that the symbolic names for the permissions are rather
cumbersome; what is often done is to use their numerical equivalents instead. Thus, for
example, the combination of read/write/execute permission for the user (0700),
read/execute permission for the group (050), and execute-only permission for others
(01) can be specified simply as 0751.

CS33 Intro to Computer Systems XX–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Setting File Permissions

#include <sys/types.h>
#include <sys/stat.h>
int chmod(const char *path, mode_t mode)

– sets the file permissions of the given file to those
specified in mode

– only the owner of a file and the superuser may change
its permissions

– nine combinable possibilities for mode
(read/write/execute for user, group, and others)
» S_IRUSR (0400), S_IWUSR (0200), S_IXUSR (0100)
» S_IRGRP (040), S_IWGRP (020), S_IXGRP (010)
» S_IROTH (04), S_IWOTH (02), S_IXOTH (01)

The umask (often called the “creation mask”) allows programs to have wired into them a
standard set of maximum needed permissions as their file-creation modes. Users then
have, as part of their environment (via a per-process parameter that is inherited by child
processes from their parents), a limit on the permissions given to each of the classes of
security principals. This limit (the umask) looks like the 9-bit permissions vector
associated with each file, but each one-bit indicates that the corresponding permission
is not to be granted. Thus, if umask is set to 022, then, whenever a file is created,
regardless of the settings of the mode bits in the open or creat call, write permission for
group and others is not to be included with the file’s access permissions.
You can determine the current setting of umask by executing the umask shell command
without any arguments.

(Recall that numbers written with a leading 0 are in octal (base-8) notation.)

CS33 Intro to Computer Systems XX–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Umask

• Standard programs create files with
“maximum needed permissions” as mode
– compilers: 0777
– editors: 0666

• Per-process parameter, umask, used to turn
off undesired permission bits
– e.g., turn off all permissions for others, write

permission for group: set umask to 027
» compilers: permissions = 0777 & ~(027) = 0750
» editors: permissions = 0666 & ~(027) = 0640

– set with umask system call or (usually) shell
command

Originally in Unix one created a file only by using the creat system call. A separate
O_CREAT flag was later given to open so that it, too, can be used to create files. The
creat system call fails if the file already exists. For open, what happens if the file already
exists depends upon the use of the flags O_EXCL and O_TRUNC. If O_EXCL is included
with the flags (e.g., open(“newfile”, O_CREAT|O_EXCL, 0777)), then, as with creat,
the call fails if the file exists. Otherwise, the call succeeds and the (existing) file is
opened. If O_TRUNC is included in the flags, then, if the file exists, its previous contents
are eliminated and the file (whose size is now zero) is opened.

When a file is created by either open or creat, the file’s initial access permissions are
the bitwise AND of the mode parameter and the complement of the process’s umask
(explained in the previous slide).

CS33 Intro to Computer Systems XX–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Creating a File

• Use either open or creat
– open(const char *pathname, int flags, mode_t mode)

» flags must include O_CREAT
– creat(const char *pathname, mode_t mode)

» open is preferred

• The mode parameter helps specify the permissions of
the newly created file
– permissions = mode & ~umask

A file’s link count is the number of directory entries that refer to it. There’s a separate
reference count that’s the number of file context structures that refer to it (via the inode
pointer – see slide XVII-9). These counts are maintained in the file’s inode, which
contains all information used by the operating system to refer to the file (on disk).

CS33 Intro to Computer Systems XX–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
// n1’s reference count is
// incremented by 1

1 RDONLY 0 inode
pointer

Note that the shell’s rm command is implemented using unlink; it simply removes the
directory entry, reducing the file’s link count by 1.

CS33 Intro to Computer Systems XX–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
// n1’s reference count
// incremented by 1

unlink("n1");
// link count decremented by 1
// same effect in shell via “rm n1”

1 RDONLY 0 inode
pointer

1

CS33 Intro to Computer Systems XX–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
// n1’s reference count
// incremented by 1

unlink("n1");
// link count decremented by 1

close(fd);
// reference count decremented by 1

1 RDONLY 0 inode
pointer

1
0

A file is deleted if and only if both its link and reference counts are zero.

CS33 Intro to Computer Systems XX–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
// n1’s reference count
// incremented by 1

unlink("n1");
// link count decremented by 1

close(fd);
// reference count decremented by 1

1
0

A file is deleted if and only if both its link and reference counts are zero.

CS33 Intro to Computer Systems XX–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 1
reference count == 0

unlink("dir1/n2");
// link count decremented by 1

0

Note that when a process terminates, all its open files are automatically closed.

CS33 Intro to Computer Systems XX–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1
int main() {
int fd = open("file", O_RDWR|O_CREAT, 0666);
unlink("file");
PutStuffInFile(fd);
GetStuffFromFile(fd);
return 0;

}

Assume that PutStuffInFile writes to the given file, and
GetStuffFromFile reads from the file.
a) This program is doomed to failure, since the file is

deleted before it’s used
b) Because the file is used after the unlink call, it won’t be

deleted
c) The file will be deleted when the program terminates

A rather elegant way for different processes to communicate is via a pipe: one process
puts data into a pipe, another process reads the data from the pipe.

CS33 Intro to Computer Systems XX–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Interprocess Communication
(IPC): Pipes

The implementation of a pipe involves the sending process using a write system call to
transfer data into a kernel buffer. The receiving process fetches the data from the buffer
via a read system call.

CS33 Intro to Computer Systems XX–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Same Machine I

Kernel buffer

Another way for processes to communicate is for them to arrange to have some memory
in common via which they share information. We discuss this approach later in the
semester.

CS33 Intro to Computer Systems XX–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Same Machine II

Shared Memory

process
1

process
2

The pipe abstraction can also be made to work between processes on different
machines. We discuss this later in the semester.

CS33 Intro to Computer Systems XX–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Different Machines

Internet

The vertical bar (“|”) is the pipe symbol in the shell. The syntax shown above represents
creating two processes, one running who and the other running wc. The standard
output of who is setup to be the pipe; the standard input of wc is setup to be the pipe.
Thus, the output of who becomes the input of wc. The ”-l” argument to wc tells it to
count and print out the number of lines that are input to it. The who command writes to
standard output the login names of all logged in users. The combination of the two
produces the number of users who are currently logged in.

CS33 Intro to Computer Systems XX–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Pipes

$cslab2e who | wc -l

pipewho wc -l

The pipe system call creates a “pipe” in the kernel and sets up two file descriptors. One,
in fd[1], is for writing to the pipe; the other, in fd[0], is for reading from the pipe. The
input end of the pipe is set up to be stdout for the process running who, and the output
end of the pipe is closed, since it’s not needed. Similarly, the input end of the pipe is set
up to be stdin for the process running wc, and the input end is closed. Since the parent
process (running the shell) has no further need for the pipe, it closes both ends. When
neither end of the pipe is open by any process, the system deletes it. If a process reads
from a pipe for which no process has the input end open, the read returns 0, indicating
end of file. If a process writes to a pipe for which no process has the output end open,
the write returns -1, indicating an error and errno is set to EPIPE; the process also
receives the SIGPIPE signal, which we explain in the next lecture.

CS33 Intro to Computer Systems XX–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Using Pipes in C

$cslab2e who | wc -l

int fd[2];
pipe(fd);
if (fork() == 0) {
close(fd[0]);
close(1);
dup(fd[1]); close(fd[1]);
execl("/usr/bin/who", "who", 0); // who sends output to pipe

}
if (fork() == 0) {
close(fd[1]);
close(0);
dup(fd[0]); close(fd[0]);
execl("/usr/bin/wc", "wc", "-l", 0); // wc’s input is from pipe

}
close(fd[1]); close(fd[0]);
// …

pipefd[1] fd[0]

This is, of course, over simplified. The complete program should be 200 or so lines long.

Note that "handle x" might simply involve taking note of x, then dealing with it later.

Also note that “artisanal” anything is always better than “non-artisanal” anything.

CS33 Intro to Computer Systems XX–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Shell 1: Artisanal Coding
while ((line = get_a_line()) != 0) {

tokens = parse_line(line);
for (int i=0; i < ntokens; i++) {

if (strcmp(tokens[i], ">") == 0) {
// handle output redirection

} else if (strcmp(tokens[i], "<") == 0) {
// handle input redirection

} else if (strcmp(tokens[i], "&") == 0) {
// handle "no wait"

} ... else {
// handle other cases

}

}
if (fork() == 0) {

// ...
execv(...);

}
// ...

}

One first writes the code assuming no redirection symbols and no &s. That's perfectly
reasonable.

CS33 Intro to Computer Systems XX–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (1)
while ((line = get_a_line()) != 0) {

tokens = parse_line(line);
for (int i=0; i < ntokens; i++) {

// handle "normal" case
}
if (fork() == 0) {

// ...
execv(...);

}
// ...

}

The next step is to deal with redirection symbols. Rather than modify the fork/exec code
so as to work for both cases, it's copied into the new case and modified there. Thus, we
now have two versions of the fork/exec code to maintain. If we find a bug in one, we
need to remember to fix it in both.

At this point it's becoming difficult for you to debug your code, and really difficult for
TAs to figure out what you're doing so they can help you.

CS33 Intro to Computer Systems XX–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (2)
next_line: while ((line = get_a_line()) != 0) {

tokens = parse_line(line);
for (int i=0; i < ntokens; i++) {

if (redirection_symbol(token[i])) {
// ...
if (fork() == 0) {

// ...
execv(...);

}
// ...
goto next_line;

}

// handle "normal" case
}
if (fork() == 0) {

// ...
execv(...);

}

// ...
}

whoops!

(whoops!)

We now have to handle & in multiple places.

If done this way, you could well have a 700-line program (the artisanal code took around
200 lines).

CS33 Intro to Computer Systems XX–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (3)
next_line: while ((line = get_a_line()) != 0) {

tokens = parse_line(line);
for (int i=0; i < ntokens; i++) {

if (redirection_symbol(token[i])) {
// ...
if (fork() == 0) {

// ...
execv(...);

}
// ... deal with &
goto next_line;

}

// handle "normal" case
}
if (fork() == 0) {

// ...
execv(...);

}

// ... also deal with & here!
}

If the code is poorly formatted, it's even tougher to understand.

CS33 Intro to Computer Systems XX–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (Worse)
next_line: while ((line = get_a_line()) != 0) {
tokens = parse_line(line);
for (int i=0; i < ntokens; i++) {
if (redirection_symbol(token[i])) {
// ...
if (fork() == 0) {

// ...
execv(...);
}
// ... deal with &
goto next_line;
}

// handle "normal" case
}
if (fork() == 0) {
// ...
execv(...);
}

// ... also deal with & here!
}

CS33 Intro to Computer Systems XX–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Artisanal Programming

• Factor your code!
– A; FE | B; FE | C; FE = (A | B | C); FE

• Format as you write!
– donʼt run the formatter only just before handing it in
– your code should always be well formatted

• If you have a tough time understanding your
code, youʼll have a tougher time debugging it
and TAs will have an even tougher time
helping you

CS33 Intro to Computer Systems XX–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Itʼs Your Code

• Be proud of it!
– it not only works; it shows skillful artisanship

• Itʼs not enough to merely work
– others have to understand it

» (not to mention you ...)
– you (and others) have to maintain it

» shell 2 is coming soon!

CS33 Intro to Computer Systems XX–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Data Representation (Part 3)

Supplied by CMU.

CS33 Intro to Computer Systems XX–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Fractional binary numbers

• What is 1011.1012?

Supplied by CMU.

CS33 Intro to Computer Systems XX–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

• Representation
– bits to right of “binary point” represent fractional powers of 2
– represents rational number:

• • •

Supplied by CMU.

CS33 Intro to Computer Systems XX–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Representable Numbers

• Limitation #1
– can exactly represent only numbers of the form n/2k
» other rational numbers have repeating bit

representations
– value representation
» 1/3 0.0101010101[01]…2
» 1/5 0.001100110011[0011]…2
» 1/10 0.0001100110011[0011]…2

• Limitation #2
– just one setting of decimal point within the w bits
» limited range of numbers (very small values? very

large?)

Supplied by CMU.

IEEE is the Institute for Electrical and Electronics Engineers (pronounced "eye triple e").

CS33 Intro to Computer Systems XX–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

IEEE Floating Point

• IEEE Standard 754
– established in 1985 as uniform standard for floating

point arithmetic
» before that, many idiosyncratic formats

– supported on all major CPUs

• Driven by numerical concerns
– nice standards for rounding, overflow, underflow
– hard to make fast in hardware
» numerical analysts predominated over hardware

designers in defining standard

Supplied by CMU.

CS33 Intro to Computer Systems XX–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

• Numerical Form:
(–1)s M 2E

– sign bit s determines whether number is negative or
positive

– significand M normally a fractional value in range
[1.0,2.0)

– exponent E weights value by power of two
• Encoding
– MSB s is sign bit s
– exp field encodes E (but is not equal to E)
– frac field encodes M (but is not equal to M)

Floating-Point Representation

s exp frac

Supplied by CMU.

On x86 hardware, all floating-point arithmetic is done with 80 bits, then reduced to
either 32 or 64 as required.

CS33 Intro to Computer Systems XX–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Precision options

• Single precision: 32 bits

• Double precision: 64 bits

• Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 64-bits

Supplied by CMU.

CS33 Intro to Computer Systems XX–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

“Normalized” Values

• When: exp ≠ 000…0 and exp ≠ 111…1

• Exponent coded as biased value: E = Exp – Bias
– exp: unsigned value exp
– bias = 2k-1 - 1, where k is number of exponent bits

» single precision: 127 (Exp: 1…254, E: -126…127)
» double precision: 1023 (Exp: 1…2046, E: -1022…1023)

• Significand coded with implied leading 1: M = 1.xxx…x2
– xxx…x: bits of frac
– minimum when frac=000…0 (M = 1.0)
– maximum when frac=111…1 (M = 2.0 – ε)
– get extra leading bit for “free”

Supplied by CMU.

CS33 Intro to Computer Systems XX–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Normalized Encoding Example
• Value: float F = 15213.0;

– 1521310 = 111011011011012

= 1.11011011011012 x 213

• Significand
M = 1.11011011011012
frac = 110110110110100000000002

• Exponent
E = 13
bias = 127
exp = 140 = 100011002

• Result:

0 10001100 11011011011010000000000
s exp frac

Supplied by CMU.

For denormalized values, there’s a single exponent value, which is 1- Bias. The
significand is in a range of values greater than or equal to zero, but less than one.

CS33 Intro to Computer Systems XX–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Denormalized Values

• Condition: exp = 000…0
• Exponent value: E = –Bias + 1 (instead of E = 0 – Bias)
• Significand coded with implied leading 0:
M = 0.xxx…x2
– xxx…x: bits of frac, range [0,1)

• Cases
– exp = 000…0, frac = 000…0
» represents zero value
» note distinct values: +0 and –0 (why?)

– exp = 000…0, frac ≠ 000…0
» numbers closest to 0.0
» equispaced

Supplied by CMU.

CS33 Intro to Computer Systems XX–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Special Values

• Condition: exp = 111…1

• Case: exp = 111…1, frac = 000…0
– represents value ¥ (infinity)
– operation that overflows
– both positive and negative
– e.g., 1.0/0.0 = −1.0/−0.0 = +¥, 1.0/−0.0 = −¥

• Case: exp = 111…1, frac ≠ 000…0
– not-a-number (NaN)
– represents case when no numeric value can be determined
– e.g., sqrt(–1), ¥ − ¥, ¥ ´ 0

Supplied by CMU.

CS33 Intro to Computer Systems XX–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Visualization: Floating-Point Encodings

+¥−¥

−0

+Denorm +Normalized−Denorm−Normalized

+0NaN NaN

For the sake of this slide and example, assume that we have a six-bit representation of
floating-point numbers. In this encoding there is one sign bit, 3 exponent bits (with a
bias of 3) and 2 fraction bits. Thus 0 011 10 is 23-3 * 1.5.

III–38

CS33 Intro to Computer Systems XX–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Mapping Real Numbers to Float

• The real number 3 is represented as
0 011 10

• The real number 3.5 is represented as
0 011 11

• How is the real number 3.4 represented?
0 011 11

• How is the real number 𝛑 represented?
0 011 10

001100 001101 001110 001111 001100

3 3.5
3.4𝛑

CS33 Intro to Computer Systems XX–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Mapping Real Numbers to Float

• If R is a real number, itʼs mapped to the
floating-point number whose value is closest
to R

What about values that are equidistant from A and B or from B and C? There are rules
for rounding such values that we don’t have time to get into.

A special case is 0. Positive 0 represents a range of values that are greater than or equal
to 0. Negative 0 represents a range of values that are less than or equal to zero.

III–40

CS33 Intro to Computer Systems XX–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Floats are Sets of Values

• If A, B, and C are successive floating-point
values
– e.g., 010001, 010010, and 010011

• B represents all real numbers from midway
between A and B through midway between B
and C

A B C

Real numbers
represented by B

It’s important to remember that a floating-point value is not a single number, but a
range of numbers.

III–41

CS33 Intro to Computer Systems XX–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

+/− Zero

• Only one zero for ints
– an int is a single number, not a range of numbers,

thus there can be only zero
• Floating-point zero

– a range of numbers around the real 0
– it really matters which side of 0 we’re on!

» a very large negative number divided by a very small
negative number should be positive

−¥/−0 = +¥
» a very large positive number divided by a very small

negative number should be negative

+¥ /−0 = −¥

III–42

CS33 Intro to Computer Systems XX–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Significance

• Normalized numbers
– for a particular exponent value E and an S-bit

significand, the range from 2E up to 2E+1 is divided
into 2S equi-spaced floating-point values
» thus each floating-point value represents 1/2S of the

range of values with that exponent
» all bits of the signifcand are important
» we say that there are S significant bits – for

reasonably large S, each floating-point value covers
a rather small part of the range
• high accuracy
• for S=23 (32-bit float), accurate to one in 223

(.0000119% accuracy)

Recall that the bias for the exponent of 8-bit IEEE FP is 7, thus for unnormalized
numbers the actual exponent is -6 (-bias+1). The significand has an implied leading 0,
thus 0 0000 001 represents 2-6 * 2-3.

With 8-bit IEEE FP. the value 0 0000 01 is interpreted as 2-9, But the number
represented could be 50% or 50% more.

III–43

CS33 Intro to Computer Systems XX–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Significance

• Unnormalized numbers
– high-order zero bits of the significand arenʼt important
– in 32-bit floating point, 0 00000000

00000000000000000000001 represents 2-149
» it is the only value with that exponent: 1 significant bit

(either 2-149 or 0)
– 0 00000000 00000000000000000000010 represents 2-148

0 00000000 00000000000000000000011 represents 1.5*2-148
» only two values with exponent -148: 2 significant bits

(encoding those two values, as well as 2-149 and 0)
– fewer significant bits mean less accuracy
– 0 00000000 00000000000000000000001 represents a range

of values from .5*2-9 to 1.5*2-9
– 50% accuracy

CS33 Intro to Computer Systems XX–44 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Floating Point

• Single precision (float)

– range: ±1.8×10-38 − ±3.4×1038, ~7 decimal digits

• Double Precision (double)

– range: ±2.23×10-308 − ±1.8×10308, ~16 decimal digits

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

CS33 Intro to Computer Systems XX–45 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

Suppose f, declared to be a float, is assigned
the largest possible floating-point positive
value (other than +∞). What is the value of
g = f+1.0?

a) 0
b) f
c) +∞
d) NaN

Note that the floating-point numbers in this and the next two slides are expressed in
base 10, not base 2.

In this and the next few slides, +f means floating-point addition (as opposed to addition
of real numbers) and *f means floating-point multiplication.

CS33 Intro to Computer Systems XX–46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Float is not Rational …

• Floating addition
– commutative: a +f b = b +f a

» yes!
– associative: a +f (b +f c) = (a +f b) +f c

» no!
• 2 +f (1e38 +f -1e38) = 2
• (2 +f 1e38) +f -1e38 = 0

CS33 Intro to Computer Systems XX–47 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Float is not Rational …

• Multiplication
– commutative: a *f b = b *f a

» yes!

– associative: a *f (b *f c) = (a *f b) *f c
» no!

• 1e37 *f (1e37 *f 1e-37) = 1e37

• (1e37 *f 1e37) *f 1e-37 = +¥

If y is 1e38 and we’re using single-precision floating-point arithmetic, then z would be
+∞ (since x -f y would be 0).

CS33 Intro to Computer Systems XX–48 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Float is not Rational …

• More …
– multiplication distributes over addition:

a *f (b +f c) = (a *f b) +f (a *f c)
» no!
» 1e38 *f (1e38 +f -1e38) = 0
» (1e38 *f 1e38) +f (1e38 *f -1e38) = NaN

– insignificance:
x = y +f 1
z = 2 /f (x -f y)
z == 2?
» not necessarily!

• consider y = 1e38

