
CS33 Intro to Computer Systems XX–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Files Part 3

CS33 Intro to Computer Systems XX–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

File Access Permissions

• Who’s allowed to do what?
– who

» user (owner)
» group
» others (rest of the world)

– what
» read
» write
» execute

CS33 Intro to Computer Systems XX–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Permissions Example

$ ls -lR
.:
total 2
drwxr-x--x 2 joe adm 1024 Dec 17 13:34 A
drwxr----- 2 joe adm 1024 Dec 17 13:34 B

./A:
total 1
-rw-rw-rw- 1 joe adm 593 Dec 17 13:34 x

./B:
total 2
-r--rw-rw- 1 joe adm 446 Dec 17 13:34 x
-rw----rw- 1 angie adm 446 Dec 17 13:45 y

adm group:
joe, angie

CS33 Intro to Computer Systems XX–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Setting File Permissions

#include <sys/types.h>
#include <sys/stat.h>
int chmod(const char *path, mode_t mode)

– sets the file permissions of the given file to those
specified in mode

– only the owner of a file and the superuser may change
its permissions

– nine combinable possibilities for mode
(read/write/execute for user, group, and others)
» S_IRUSR (0400), S_IWUSR (0200), S_IXUSR (0100)
» S_IRGRP (040), S_IWGRP (020), S_IXGRP (010)
» S_IROTH (04), S_IWOTH (02), S_IXOTH (01)

CS33 Intro to Computer Systems XX–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Umask

• Standard programs create files with
“maximum needed permissions” as mode
– compilers: 0777
– editors: 0666

• Per-process parameter, umask, used to turn
off undesired permission bits
– e.g., turn off all permissions for others, write

permission for group: set umask to 027
» compilers: permissions = 0777 & ~(027) = 0750
» editors: permissions = 0666 & ~(027) = 0640

– set with umask system call or (usually) shell
command

CS33 Intro to Computer Systems XX–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Creating a File

• Use either open or creat
– open(const char *pathname, int flags, mode_t mode)

» flags must include O_CREAT
– creat(const char *pathname, mode_t mode)

» open is preferred

• The mode parameter helps specify the permissions of
the newly created file
– permissions = mode & ~umask

CS33 Intro to Computer Systems XX–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
// n1’s reference count is
// incremented by 1

1 RDONLY 0 inode
pointer

CS33 Intro to Computer Systems XX–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
// n1’s reference count
// incremented by 1

unlink("n1");
// link count decremented by 1
// same effect in shell via “rm n1”

1 RDONLY 0 inode
pointer

1

CS33 Intro to Computer Systems XX–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
// n1’s reference count
// incremented by 1

unlink("n1");
// link count decremented by 1

close(fd);
// reference count decremented by 1

1 RDONLY 0 inode
pointer

1
0

CS33 Intro to Computer Systems XX–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 2
reference count == 1

int fd = open("n1", O_RDONLY);
// n1’s reference count
// incremented by 1

unlink("n1");
// link count decremented by 1

close(fd);
// reference count decremented by 1

1
0

CS33 Intro to Computer Systems XX–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Link and Reference Counts
n1 dir1 dir2

n2 f1

link count == 1
reference count == 0

unlink("dir1/n2");
// link count decremented by 1

0

CS33 Intro to Computer Systems XX–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1
int main() {

int fd = open("file", O_RDWR|O_CREAT, 0666);

unlink("file");
PutStuffInFile(fd);

GetStuffFromFile(fd);

return 0;

}

Assume that PutStuffInFile writes to the given file, and
GetStuffFromFile reads from the file.
a) This program is doomed to failure, since the file is

deleted before it’s used
b) Because the file is used after the unlink call, it won’t be

deleted
c) The file will be deleted when the program terminates

CS33 Intro to Computer Systems XX–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Interprocess Communication
(IPC): Pipes

CS33 Intro to Computer Systems XX–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Same Machine I

Kernel buffer

CS33 Intro to Computer Systems XX–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Same Machine II

Shared Memory

process
1

process
2

CS33 Intro to Computer Systems XX–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Interprocess Communication:
Different Machines

Internet

CS33 Intro to Computer Systems XX–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Pipes

$cslab2e who | wc -l

pipewho wc -l

CS33 Intro to Computer Systems XX–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Using Pipes in C

$cslab2e who | wc -l

int fd[2];
pipe(fd);
if (fork() == 0) {

close(fd[0]);
close(1);
dup(fd[1]); close(fd[1]);
execl("/usr/bin/who", "who", 0); // who sends output to pipe

}
if (fork() == 0) {

close(fd[1]);
close(0);
dup(fd[0]); close(fd[0]);
execl("/usr/bin/wc", "wc", "-l", 0); // wc’s input is from pipe

}
close(fd[1]); close(fd[0]);
// …

pipefd[1] fd[0]

CS33 Intro to Computer Systems XX–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Shell 1: Artisanal Coding
while ((line = get_a_line()) != 0) {

tokens = parse_line(line);

for (int i=0; i < ntokens; i++) {
if (strcmp(tokens[i], ">") == 0) {

// handle output redirection

} else if (strcmp(tokens[i], "<") == 0) {
// handle input redirection

} else if (strcmp(tokens[i], "&") == 0) {
// handle "no wait"

} ... else {

// handle other cases

}
}

if (fork() == 0) {

// ...
execv(...);

}
// ...

}

CS33 Intro to Computer Systems XX–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (1)
while ((line = get_a_line()) != 0) {

tokens = parse_line(line);

for (int i=0; i < ntokens; i++) {
// handle "normal" case

}

if (fork() == 0) {
// ...

execv(...);

}
// ...

}

CS33 Intro to Computer Systems XX–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (2)
next_line: while ((line = get_a_line()) != 0) {

tokens = parse_line(line);

for (int i=0; i < ntokens; i++) {
if (redirection_symbol(token[i])) {

// ...

if (fork() == 0) {
// ...

execv(...);

}
// ...

goto next_line;

}
// handle "normal" case

}

if (fork() == 0) {
// ...

execv(...);
}

// ...

}

whoops!

(whoops!)

CS33 Intro to Computer Systems XX–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (3)
next_line: while ((line = get_a_line()) != 0) {

tokens = parse_line(line);

for (int i=0; i < ntokens; i++) {
if (redirection_symbol(token[i])) {

// ...

if (fork() == 0) {
// ...

execv(...);

}
// ... deal with &
goto next_line;

}
// handle "normal" case

}

if (fork() == 0) {
// ...

execv(...);
}

// ... also deal with & here!
}

CS33 Intro to Computer Systems XX–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Shell 1: Non-Artisanal Coding (Worse)
next_line: while ((line = get_a_line()) != 0) {
tokens = parse_line(line);

for (int i=0; i < ntokens; i++) {
if (redirection_symbol(token[i])) {

// ...

if (fork() == 0) {
// ...

execv(...);

}
// ... deal with &

goto next_line;

}
// handle "normal" case

}

if (fork() == 0) {
// ...

execv(...);
}

// ... also deal with & here!

}

CS33 Intro to Computer Systems XX–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Artisanal Programming

• Factor your code!
– A; FE | B; FE | C; FE = (A | B | C); FE

• Format as you write!
– donʼt run the formatter only just before handing it in
– your code should always be well formatted

• If you have a tough time understanding your
code, youʼll have a tougher time debugging it
and TAs will have an even tougher time
helping you

CS33 Intro to Computer Systems XX–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Itʼs Your Code

• Be proud of it!
– it not only works; it shows skillful artisanship

• Itʼs not enough to merely work
– others have to understand it

» (not to mention you ...)
– you (and others) have to maintain it

» shell 2 is coming soon!

CS33 Intro to Computer Systems XX–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Data Representation (Part 3)

CS33 Intro to Computer Systems XX–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Fractional binary numbers

• What is 1011.1012?

CS33 Intro to Computer Systems XX–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

• Representation
– bits to right of “binary point” represent fractional powers of 2
– represents rational number:

• • •

CS33 Intro to Computer Systems XX–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Representable Numbers

• Limitation #1
– can exactly represent only numbers of the form n/2k
» other rational numbers have repeating bit

representations
– value representation
» 1/3 0.0101010101[01]…2
» 1/5 0.001100110011[0011]…2
» 1/10 0.0001100110011[0011]…2

• Limitation #2
– just one setting of decimal point within the w bits
» limited range of numbers (very small values? very

large?)

CS33 Intro to Computer Systems XX–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

IEEE Floating Point

• IEEE Standard 754
– established in 1985 as uniform standard for floating

point arithmetic
» before that, many idiosyncratic formats

– supported on all major CPUs

• Driven by numerical concerns
– nice standards for rounding, overflow, underflow
– hard to make fast in hardware
» numerical analysts predominated over hardware

designers in defining standard

CS33 Intro to Computer Systems XX–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

• Numerical Form:
(–1)s M 2E

– sign bit s determines whether number is negative or
positive

– significand M normally a fractional value in range
[1.0,2.0)

– exponent E weights value by power of two
• Encoding
– MSB s is sign bit s
– exp field encodes E (but is not equal to E)
– frac field encodes M (but is not equal to M)

Floating-Point Representation

s exp frac

CS33 Intro to Computer Systems XX–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Precision options

• Single precision: 32 bits

• Double precision: 64 bits

• Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 64-bits

CS33 Intro to Computer Systems XX–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

“Normalized” Values

• When: exp ≠ 000…0 and exp ≠ 111…1

• Exponent coded as biased value: E = Exp – Bias
– exp: unsigned value exp
– bias = 2k-1 - 1, where k is number of exponent bits

» single precision: 127 (Exp: 1…254, E: -126…127)
» double precision: 1023 (Exp: 1…2046, E: -1022…1023)

• Significand coded with implied leading 1: M = 1.xxx…x2
– xxx…x: bits of frac
– minimum when frac=000…0 (M = 1.0)
– maximum when frac=111…1 (M = 2.0 – ε)
– get extra leading bit for “free”

CS33 Intro to Computer Systems XX–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Normalized Encoding Example
• Value: float F = 15213.0;

– 1521310 = 111011011011012

= 1.11011011011012 x 213

• Significand
M = 1.11011011011012
frac = 110110110110100000000002

• Exponent
E = 13
bias = 127
exp = 140 = 100011002

• Result:

0 10001100 11011011011010000000000
s exp frac

CS33 Intro to Computer Systems XX–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Denormalized Values

• Condition: exp = 000…0
• Exponent value: E = –Bias + 1 (instead of E = 0 – Bias)
• Significand coded with implied leading 0:
M = 0.xxx…x2
– xxx…x: bits of frac, range [0,1)

• Cases
– exp = 000…0, frac = 000…0
» represents zero value
» note distinct values: +0 and –0 (why?)

– exp = 000…0, frac ≠ 000…0
» numbers closest to 0.0
» equispaced

CS33 Intro to Computer Systems XX–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Special Values

• Condition: exp = 111…1

• Case: exp = 111…1, frac = 000…0
– represents value ¥ (infinity)
– operation that overflows
– both positive and negative
– e.g., 1.0/0.0 = −1.0/−0.0 = +¥, 1.0/−0.0 = −¥

• Case: exp = 111…1, frac ≠ 000…0
– not-a-number (NaN)
– represents case when no numeric value can be determined
– e.g., sqrt(–1), ¥ − ¥, ¥ ´ 0

CS33 Intro to Computer Systems XX–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Visualization: Floating-Point Encodings

+¥−¥

−0

+Denorm +Normalized−Denorm−Normalized

+0NaN NaN

CS33 Intro to Computer Systems XX–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Mapping Real Numbers to Float

• The real number 3 is represented as
0 011 10

• The real number 3.5 is represented as
0 011 11

• How is the real number 3.4 represented?
0 011 11

• How is the real number 𝛑 represented?
0 011 10

001100 001101 001110 001111 001100

3 3.5
3.4𝛑

CS33 Intro to Computer Systems XX–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Mapping Real Numbers to Float

• If R is a real number, itʼs mapped to the
floating-point number whose value is closest
to R

CS33 Intro to Computer Systems XX–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Floats are Sets of Values

• If A, B, and C are successive floating-point
values
– e.g., 010001, 010010, and 010011

• B represents all real numbers from midway
between A and B through midway between B
and C

A B C

Real numbers
represented by B

CS33 Intro to Computer Systems XX–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

+/− Zero

• Only one zero for ints
– an int is a single number, not a range of numbers,

thus there can be only zero
• Floating-point zero

– a range of numbers around the real 0
– it really matters which side of 0 we’re on!

» a very large negative number divided by a very small
negative number should be positive

−¥/−0 = +¥
» a very large positive number divided by a very small

negative number should be negative

+¥ /−0 = −¥

CS33 Intro to Computer Systems XX–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Significance

• Normalized numbers
– for a particular exponent value E and an S-bit

significand, the range from 2E up to 2E+1 is divided
into 2S equi-spaced floating-point values
» thus each floating-point value represents 1/2S of the

range of values with that exponent
» all bits of the signifcand are important
» we say that there are S significant bits – for

reasonably large S, each floating-point value covers
a rather small part of the range
• high accuracy
• for S=23 (32-bit float), accurate to one in 223

(.0000119% accuracy)

CS33 Intro to Computer Systems XX–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Significance

• Unnormalized numbers
– high-order zero bits of the significand arenʼt important
– in 32-bit floating point, 0 00000000

00000000000000000000001 represents 2-149
» it is the only value with that exponent: 1 significant bit

(either 2-149 or 0)
– 0 00000000 00000000000000000000010 represents 2-148

0 00000000 00000000000000000000011 represents 1.5*2-148
» only two values with exponent -148: 2 significant bits

(encoding those two values, as well as 2-149 and 0)
– fewer significant bits mean less accuracy
– 0 00000000 00000000000000000000001 represents a range

of values from .5*2-9 to 1.5*2-9
– 50% accuracy

CS33 Intro to Computer Systems XX–44 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Floating Point

• Single precision (float)

– range: ±1.8×10-38 − ±3.4×1038, ~7 decimal digits

• Double Precision (double)

– range: ±2.23×10-308 − ±1.8×10308, ~16 decimal digits

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

CS33 Intro to Computer Systems XX–45 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

Suppose f, declared to be a float, is assigned
the largest possible floating-point positive
value (other than +∞). What is the value of
g = f+1.0?

a) 0
b) f
c) +∞
d) NaN

CS33 Intro to Computer Systems XX–46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Float is not Rational …

• Floating addition
– commutative: a +f b = b +f a

» yes!
– associative: a +f (b +f c) = (a +f b) +f c

» no!
• 2 +f (1e38 +f -1e38) = 2
• (2 +f 1e38) +f -1e38 = 0

CS33 Intro to Computer Systems XX–47 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Float is not Rational …

• Multiplication
– commutative: a *f b = b *f a

» yes!

– associative: a *f (b *f c) = (a *f b) *f c
» no!

• 1e37 *f (1e37 *f 1e-37) = 1e37

• (1e37 *f 1e37) *f 1e-37 = +¥

CS33 Intro to Computer Systems XX–48 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Float is not Rational …

• More …
– multiplication distributes over addition:

a *f (b +f c) = (a *f b) +f (a *f c)
» no!
» 1e38 *f (1e38 +f -1e38) = 0
» (1e38 *f 1e38) +f (1e38 *f -1e38) = NaN

– insignificance:
x = y +f 1
z = 2 /f (x -f y)
z == 2?
» not necessarily!

• consider y = 1e38

