
CS33 Intro to Computer Systems XXI–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Data Representation (Part 4)

Supplied by CMU.

CS33 Intro to Computer Systems XXI–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Normalized Encoding Example
• Value: float F = 15213.0;

– 1521310 = 111011011011012

= 1.11011011011012 x 213

• Significand
M = 1.11011011011012
frac = 110110110110100000000002

• Exponent
E = 13
bias = 127
exp = 140 = 100011002

• Result:

0 10001100 11011011011010000000000
s exp frac

Supplied by CMU.

For denormalized values, there’s a single exponent value, which is 1- Bias. The
significand is in a range of values greater than or equal to zero, but less than one.

For normalized values, as the numbers we wish to represent get smaller, we simply
subtract one from the exponent. But with denormalized values, the exponent is as small
as it can get. Thus to represent even smaller values, the significand does not start with
an implied one, but with zero. The smallest positive single-precision normalized value is
1.0 * 2-126. The largest single-precision denormalized value is
.11111111111111111111111 * 2-126. The smallest non-zero single-precision
denormalized value is .00000000000000000000001 * 2-126.

CS33 Intro to Computer Systems XXI–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Denormalized Values

• Condition: exp = 000…0
• Exponent value: E = 1 – Bias (instead of E = 0 – Bias)
• Significand coded with implied leading 0:
M = 0.xxx…x2
– xxx…x: bits of frac, range [0,1)

• Cases
– exp = 000…0, frac = 000…0
» represents zero value
» note distinct values: +0 and –0 (why?)

– exp = 000…0, frac ≠ 000…0
» numbers closest to 0.0
» for S.P., range from .111...1 * 2-126 to .000...001 * 2-126

» smallest normalized value is 1.0 * 2-126

Supplied by CMU.

CS33 Intro to Computer Systems XXI–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Special Values

• Condition: exp = 111…1

• Case: exp = 111…1, frac = 000…0
– represents value ¥ (infinity)
– operation that overflows
– both positive and negative
– e.g., 1.0/0.0 = −1.0/−0.0 = +¥, 1.0/−0.0 = −¥

• Case: exp = 111…1, frac ≠ 000…0
– not-a-number (NaN)
– represents case when no numeric value can be determined
– e.g., sqrt(–1), ¥ − ¥, ¥ ´ 0

Supplied by CMU.

CS33 Intro to Computer Systems XXI–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Visualization: Floating-Point Encodings

+¥−¥

−0

+Denorm +Normalized−Denorm−Normalized

+0NaN NaN

For the sake of this slide and example, assume that we have a six-bit representation of
floating-point numbers. In this encoding there is one sign bit, 3 exponent bits (with a
bias of 3) and 2 fraction bits. Thus 0 011 10 is 23-3 * 1.5.

III–6

CS33 Intro to Computer Systems XXI–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Mapping Real Numbers to Float

• The real number 3 is represented as
0 100 10

• The real number 3.5 is represented as
0 100 11

• How is the real number 3.4 represented?
0 100 11

• How is the real number 𝛑 represented?
0 100 10

010000 010001 010010 010011 010000

3 3.5
3.4𝛑

CS33 Intro to Computer Systems XXI–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Mapping Real Numbers to Float

• If R is a real number, itʼs mapped to the
floating-point number whose value is closest
to R

What about values that are equidistant from A and B or from B and C? There are rules
for rounding such values that we don’t have time to get into.

A special case is 0. Positive 0 represents a range of values that are greater than or equal
to 0. Negative 0 represents a range of values that are less than or equal to zero.

III–8

CS33 Intro to Computer Systems XXI–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Floats are Sets of Values

• If A, B, and C are successive floating-point
values
– e.g., 010001, 010010, and 010011

• B represents all real numbers from midway
between A and B through midway between B
and C

A B C

Real numbers
represented by B

It’s important to remember that a floating-point value is not a single number, but a
range of numbers.

III–9

CS33 Intro to Computer Systems XXI–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

+/− Zero

• Only one zero for ints
– an int is a single number, not a range of numbers,

thus there can be only zero
• Floating-point zero

– a range of numbers around the real 0
– it really matters which side of 0 we’re on!

» a very large negative number divided by a very small
negative number should be positive

−¥/−0 = +¥
» a very large positive number divided by a very small

negative number should be negative

+¥ /−0 = −¥

III–10

CS33 Intro to Computer Systems XXI–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Significance

• Normalized numbers
– for a particular exponent value E and an S-bit

significand, the range from 2E up to 2E+1 is divided
into 2S equi-spaced floating-point values
» thus each floating-point value represents 1/2S of the

range of values with that exponent
» all bits of the signifcand are important
» we say that there are S significant bits – for

reasonably large S, each floating-point value covers
a rather small part of the range
• high accuracy
• for S=23 (32-bit float), accurate to one in 223

(.0000119% accuracy)

Recall that the bias for the exponent of 8-bit IEEE FP is 7, thus for unnormalized
numbers the actual exponent is -6 (-bias+1). The significand has an implied leading 0,
thus 0 0000 001 represents 2-6 * 2-3.

With 8-bit IEEE FP. the value 0 0000 01 is interpreted as 2-9, But the number
represented could be 50% or 50% more.

III–11

CS33 Intro to Computer Systems XXI–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Significance

• Unnormalized numbers
– high-order zero bits of the significand arenʼt important
– in 32-bit floating point, 0 00000000

00000000000000000000001 represents 2-149
» it is the only value with that exponent: 1 significant bit

(either 2-149 or 0)
– 0 00000000 00000000000000000000010 represents 2-148

0 00000000 00000000000000000000011 represents 1.5*2-148
» only two values with exponent -148: 2 significant bits

(encoding those two values, as well as 2-149 and 0)
– fewer significant bits mean less accuracy
– 0 00000000 00000000000000000000001 represents a range

of values from .5*2-9 to 1.5*2-9
– 50% accuracy

CS33 Intro to Computer Systems XXI–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Floating Point

• Single precision (float)

– range: ±1.8×10-38 − ±3.4×1038, ~7 decimal digits

• Double Precision (double)

– range: ±2.23×10-308 − ±1.8×10308, ~16 decimal digits

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

CS33 Intro to Computer Systems XXI–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

Suppose f, declared to be a float, is assigned
the largest possible floating-point positive
value (other than +∞). What is the value of
g = f+1.0?

a) 0
b) f
c) +∞
d) NaN

Note that the floating-point numbers in this and the next two slides are expressed in
base 10, not base 2.

In this and the next few slides, +f means floating-point addition (as opposed to addition
of real numbers) and *f means floating-point multiplication.

CS33 Intro to Computer Systems XXI–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Float is not Rational …

• Floating addition
– commutative: a +f b = b +f a

» yes!
– associative: a +f (b +f c) = (a +f b) +f c

» no!
• 2 +f (1e38 +f -1e38) = 2
• (2 +f 1e38) +f -1e38 = 0

CS33 Intro to Computer Systems XXI–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Float is not Rational …

• Multiplication
– commutative: a *f b = b *f a

» yes!

– associative: a *f (b *f c) = (a *f b) *f c
» no!

• 1e37 *f (1e37 *f 1e-37) = 1e37

• (1e37 *f 1e37) *f 1e-37 = +¥

If y is 1e38 and we’re using single-precision floating-point arithmetic, then z would be
+∞ (since x -f y would be 0).

CS33 Intro to Computer Systems XXI–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Float is not Rational …

• More …
– multiplication distributes over addition:

a *f (b +f c) = (a *f b) +f (a *f c)
» no!
» 1e38 *f (1e38 +f -1e38) = 0
» (1e38 *f 1e38) +f (1e38 *f -1e38) = NaN

– insignificance:
x = y +f 1
z = 2 /f (x -f y)
z == 2?
» not necessarily!

• consider y = 1e38

CS33 Intro to Computer Systems XXI–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Signals Part 1

CS33 Intro to Computer Systems XXI–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

An Interlude Between Shells

• Shell 1
– it can run programs
– it can redirect I/O

• Signals
– a mechanism for coping with exceptions and

external events
– the mechanism needed for shell 2

• Shell 2
– it can control running programs

CS33 Intro to Computer Systems XXI–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Whoops …

$ SometimesUsefulProgram xyz
Are you sure you want to proceed?

Are you really sure?
Reformatting of your disk will begin
in 3 seconds.

Everything you own will be deleted.
There's little you can do about it.
Too bad …

Y
Y

Oh dear…

CS33 Intro to Computer Systems XXI–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

A Gentler Approach

• Signals
–get a process’s attention

» send it a signal
–process must either deal with it or be

terminated
» in some cases, the latter is the only option

CS33 Intro to Computer Systems XXI–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Stepping Back …

• What are we trying to do?
– interrupt the execution of a program

» cleanly terminate it
or

» cleanly change its course

– not for the faint of heart
» it’s difficult
» it gets complicated
» (not done in Windows)

Signals are a kernel-supported mechanism for reporting events to user code and forcing
a response to them. There are actually two sorts of such events, to which we sometimes
refer as exceptions and interrupts. The former occur typically because the program has
done something wrong. The response, the sending of a signal, is immediate; such signals
are known as synchronous signals. The latter are in response to external actions, such
as a timer expiring, an action at the keyboard, or the explicit sending of a signal by
another process. Signals send in response to these events can seemingly occur at any
moment and are referred to as asynchronous signals.

Processes react to signals using the actions shown in the slide. The action taken
depends partly on the signal and partly on arrangements made in the process
beforehand.

A core dump is the contents of a process's address space, written to a file (called core),
reflecting what the situation was when it was terminated by a signal. They can be used
by gdb to see what happened (e.g., to get a backtrace). Since they're fairly large and
rarely looked at, they're normally disabled. We'll look at them further shortly.

CS33 Intro to Computer Systems XXI–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signals

• Generated (by OS) in response to
– exceptions (e.g., arithmetic errors, addressing

problems)
» synchronous signals

– external events (e.g., timer expiration, certain
keystrokes, actions of other processes)
» asynchronous signals

• Effect on process:
– termination (possibly producing a core dump)
– invocation of a function that has been set up to be a

signal handler
– suspension of execution
– resumption of execution

This slide shows the complete list of signals required by POSIX 1003.1, the official Unix
specification. In addition, many Unix systems support other signals, some of which we’ll
mention in the course. The third column of the slide lists the default actions in response
to each of the signals. termmeans the process is terminated, core means there is also a
core dump; ignore means that the signal is ignored; stop means that the process is
stopped (suspended); cont means that a stopped process is resumed (continued); forced
means that the default action cannot be changed and that the signal cannot be blocked
or ignored.

CS33 Intro to Computer Systems XXI–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signal Types

SIGABRT abort called term, core
SIGALRM alarm clock term
SIGCHLD death of a child ignore
SIGCONT continue after stop cont
SIGFPE erroneous arithmetic operation term, core
SIGHUP hangup on controlling terminal term
SIGILL illegal instruction term, core
SIGINT interrupt from keyboard term
SIGKILL kill forced term
SIGPIPE write on pipe with no one to read term
SIGQUIT quit term, core
SIGSEGV invalid memory reference term, core
SIGSTOP stop process forced stop
SIGTERM software termination signal term
SIGTSTP stop signal from keyboard stop
SIGTTIN background read attempted stop
SIGTTOU background write attempted stop
SIGUSR1 application-defined signal 1 stop
SIGUSR2 application-defined signal 2 stop

Note that the signals generated by typing control characters on the keyboard
are actually sent to the current process group of the terminal, a concept we
discuss soon.

CS33 Intro to Computer Systems XXI–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Sending a Signal

• int kill(pid_t pid, int sig)
– send signal sig to process pid

• Also
– kill shell command
– type ctrl-c

» sends signal 2 (SIGINT) to current process
– type ctrl-\

» sends signal 3 (SIGQUIT) to current process
– type ctrl-z

» sends signal 20 (SIGTSTP) to current process
– do something bad

» bad address, bad arithmetic, etc.

The signal function establishes a new handler for the given signal and returns
the address of the previous handler.

CS33 Intro to Computer Systems XXI–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Handling Signals

#include <signal.h>

typedef void (*sighandler_t)(int);
sighandler_t signal(int signo,

sighandler_t handler);

sighandler_t OldHandler;

OldHandler = signal(SIGINT, NewHandler);

CS33 Intro to Computer Systems XXI–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Special Handlers

• SIG_IGN
– ignore the signal
–signal(SIGINT, SIG_IGN);

• SIG_DFL
–use the default handler

» usually terminates the process
–signal(SIGINT, SIG_DFL);

Note that the C compiler implicitly concatenates two adjacent strings, as done
in printf above.

CS33 Intro to Computer Systems XXI–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Example

void sigloop() {
while(1)
;

}

int main() {
void handler(int);
signal(SIGINT, handler);
sigloop();
return 1;

}
void handler(int signo) {
printf("I received signal %d. "

"Whoopee!!\n", signo);
}

Don’t forget to delete the core files when you're finished with them! Note that neither
OSX nor Windows supports core dumps.

Some details on the ulimit command: its supports both a hard limit (which can't be
modified) and a soft limit (which can later be modified). By default, ulimit sets both the
hard and soft limits. Thus typing

ulimit –c 0

sets both the hard and soft limits of core file size to 0, meaning that you can't increase
the limit later (within the execution of the current invocation of this shell).

But if you type

ulimit –Sc 0

then just the soft limit is modified, allowing you to type

ulimit –c unlimited

later.

CS33 Intro to Computer Systems XXI–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Digression: Core Dumps

• Core dumps
– files (called “core”) that hold the contents of a

processʼs address space after termination by a
signal

– theyʼre large and rarely used, so theyʼre often
disabled by default

– use the ulimit command in bash to enable them

ulimit –c unlimited

– use gdb to examine the process (post-mortem
debugging)

gdb sig core

The sigaction system call is the the more general means for establishing a process’s
response to a particular signal. Its first argument is the signal for which a response is
being specified, the second argument is a pointer to a sigaction structure defining the
response, and the third argument is a pointer to memory in which a sigaction structure
will be stored containing the specification of what the response was prior to this call. If
the third argument is null, the prior response is not returned.

The sa_handler member of sigaction is either a pointer to a user-defined handler
function for the signal or one of SIG_DFL (meaning that the default action is taken) or
SIG_IGN (meaning that the signal is to be ignored). The sig_action member is an
alternative means for specifying a handler function; we won't get a chance to discuss it,
but it's used when more information about the cause of a signal is needed.

When a user-defined signal-handler function is entered in response to a signal, the
signal itself is masked until the function returns. Using the sa_mask member, one can
specify additional signals to be masked while the handler function is running. On return
from the handler function, the process’s previous signal mask is restored.

The sa_flags member is used to specify various other things which we describe in
upcoming slides.

CS33 Intro to Computer Systems XXI–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

sigaction

int sigaction(int sig, const struct sigaction *new,
struct sigaction *old);

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;

};

int main() {
struct sigaction act; void myhandler(int);
sigemptyset(&act.sa_mask); // zeroes the mask
act.sa_flags = 0;
act.sa_handler = myhandler;
sigaction(SIGINT, &act, NULL);
…

}

This has behavior identical to the previous example; we’re using sigaction
rather than signal to set up the signal handler.

CS33 Intro to Computer Systems XXI–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Example

int main() {
void handler(int);
struct sigaction act;
act.sa_handler = handler;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
sigaction(SIGINT, &act, 0);

while(1)
;

return 1;
}

void handler(int signo) {
printf("I received signal %d. "

"Whoopee!!\n", signo);
}

CS33 Intro to Computer Systems XXI–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

int main() {
void handler(int);
struct sigaction act;
act.sa_handler = handler;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
sigaction(SIGINT, &act, 0);

while(1)
;

return 1;
}

void handler(int signo) {
printf("I received signal %d. "

"Whoopee!!\n", signo);
}

You run the example program, then
quickly type ctrl-C. What is the most
likely explanation if the program then
terminates?

a) this “can’t happen”; thus
there’s a problem with the
system

b) you’re really quick or the
system is really slow (or both)

c) what we’ve told you so far
isn’t quite correct

Here we use the setitimer system call to arrange so that a SIGALRM signal is generated
in one millisecond. (The system call takes three arguments: the first indicates how time
should be measured; what’s specified here is to use real time. See its man page for other
possibilities. The second argument contains a struct itimerval that itself contains two
struct timevals. One (named it_value) indicates how much time should elapse before a
SIGALRM is generated for the process. The other (named it_interval), if non-zero,
indicates that a SIGALRM should be sent again, repeatedly, every it_interval period of
time. Each process may have only one pending timer, thus when a process calls
setitimer, the new value replaces the old. If the third argument to setitimer is non-
zero, the old value is stored at the location it points to.)

The pause system call causes the process to block (go to sleep) and not resume until
some signal that is not ignored is delivered.

CS33 Intro to Computer Systems XXI–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Waiting for a Signal …

signal(SIGALRM, RespondToSignal);

…

struct timeval waitperiod = {0, 1000};
/* seconds, microseconds */

struct timeval interval = {0, 0};
struct itimerval timerval;
timerval.it_value = waitperiod;
timerval.it_interval = interval;

setitimer(ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */
printf("success!\n");

CS33 Intro to Computer Systems XXI–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 3

signal(SIGALRM, RespondToSignal);

…

struct timeval waitperiod = {0, 1000};
/* seconds, microseconds */

struct timeval interval = {0, 0};
struct itimerval timerval;
timerval.it_value = waitperiod;
timerval.it_interval = interval;

setitimer(ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */
printf("success!\n");

This program is guaranteed to print
“success!”.

a) no
b) yes

CS33 Intro to Computer Systems XXI–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Masking Signals

setitimer(ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */

No signals here, please!

If a signal is masked, then, if it occurs, it's not immediately applied to the process, but
will be applied when it's no longer masked.

CS33 Intro to Computer Systems XXI–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Masking Signals

mask SIGALRM
setitimer(ITIMER_REAL, &timerval, 0);

/* SIGALRM sent in ~one millisecond */

unmask and wait for SIGALRM

No signals here

Here’s a safer way of doing what was attempted in the earlier slide. We mask the
SIGALRM signal before calling setitimer. Then, rather than calling pause, we call
sigsuspend, which sets the set of masked signals to its argument and, at the same
instant, blocks the calling process. Thus if the SIGALRM is generated before our process
calls sigsuspend, it won’t be delivered right away. Since the call to sigsuspend
reinstates the previous mask (which, presumably, did not include SIGALRM), the
SIGALRM signal will be delivered and the process will return (after invoking the
handler). When sigsuspend returns, the signal mask that was in place just before it was
called is restored. Thus we have to restore oldset explicitly.

As with pause, sigsuspend returns only if an unmasked signal that is not ignored is
delivered.

CS33 Intro to Computer Systems XXI–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Doing It Safely
sigset_t set, oldset;
sigemptyset(&set);
sigaddset(&set, SIGALRM);
sigprocmask(SIG_BLOCK, &set, &oldset);

/* SIGALRM now masked */
…
setitimer(ITIMER_REAL, &timerval, 0);

/* SIGALRM sent in ~one millisecond */

sigsuspend(&oldset); /* unmask sig and wait */
/* SIGALRM masked again */

sigprocmask(SIG_SETMASK, &oldset, (sigset_t *)0);
/* SIGALRM unmasked */

printf("success!\n");

A number of signal-related operations involve sets of signals. These sets are normally
represented by a bit vector of type sigset_t.

CS33 Intro to Computer Systems XXI–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signal Sets

• To clear a set:
int sigemptyset(sigset_t *set);

• To add or remove a signal from the set:
int sigaddset(sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);

• Example: to refer to both SIGHUP and SIGINT:
sigset_t set;

sigemptyset(&set);
sigaddset(&set, SIGHUP);
sigaddset(&set, SIGINT);

In addition to ignoring signals, you may specify that they are to be blocked (that is, held
pending or masked). When a signal type is masked, signals of that type remains pending
and do not interrupt the process until they are unmasked. When the process unblocks
the signal, the action associated with any pending signal is performed. This technique is
most useful for protecting critical code that should not be interrupted. Also, as we’ve
already seen, when the handler for a signal is entered, subsequent occurrences of that
signal are automatically masked until the handler is exited, hence the handler never has
to worry about being invoked to handle another instance of the signal it’s already
handling.

CS33 Intro to Computer Systems XXI–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Masking (Blocking) Signals

#include <signal.h>
int sigprocmask(int how, const sigset_t *set,

sigset_t *old);

– used to examine or change the signal mask of the calling
process
» how is one of three commands:

• SIG_BLOCK
– the new signal mask is the union of the current

signal mask and set
• SIG_UNBLOCK

– the new signal mask is the intersection of the
current signal mask and the complement of set

• SIG_SETMASK
– the new signal mask is set

CS33 Intro to Computer Systems XXI–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signal Handlers and Masking

• What if a signal occurs while a previous instance
is being handled?
– inconvenient …

• Signals are masked while being handled
– may mask other signals as well:

struct sigaction act; void myhandler(int);
sigemptyset(&act.sa_mask); // zeroes the mask
sigaddset(&act.sa_mask, SIGQUIT);

// also mask SIGQUIT
act.sa_flags = 0;
act.sa_handler = myhandler;
sigaction(SIGINT, &act, NULL);

This slide sketches something that one might want to try to do: give a user a limited
amount of time (in this case, 30 seconds — the alarm function causes the system to
send the process a SIGALRM signal in the given number of seconds) to provide some
input, then, if no input, notify the caller that there is a problem. Here we’d like our
timeout handler to transfer control to someplace else in the program, but we can’t do
this. (Note also that we should cancel the call to alarm if there is input. So that we can
fit all the code in a single slide, we’ve left this part out.)

CS33 Intro to Computer Systems XXI–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Timed Out!

int TimedInput() {
signal(SIGALRM, timeout);
…
alarm(30); /* send SIGALRM in 30 seconds */
GetInput(); /* possible long wait for input */
alarm(0); /* cancel SIGALRM request */
HandleInput();
return(0);

nogood:
return(1);

}

void timeout() {
goto nogood; /* not legal but straightforward */

}

To get around the problem of not being able to use a goto statement to get out of a
signal handler, we introduce the setjmp/longjmp facility, also known as the nonlocal
goto. A call to sigsetjmp stores context information (about the current locus of
execution) that can be restored via a call to siglongjmp. A bit more precisely: sigsetjmp
stores into its first argument the values of the program-counter (instruction-pointer),
stack-pointer, and other registers representing the process’s current execution context.
If the second argument is non-zero, the current signal mask is saved as well. The call
returns 0. When siglongjmp is called with a pointer to this context information as its
first argument, the current register values are replaced with those that were saved. If the
signal mask was saved, that is restored as well. The effect of doing this is that the
process resumes execution where it was when the context information was saved: inside
of sigsetjmp. However, this time, rather than returning zero, it returns the second
argument passed to siglongjmp (1 in the example).

To use this facility, you must include the header file setjmp.h.

CS33 Intro to Computer Systems XXI–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Doing It Legally (but Weirdly)
sigjmp_buf context;

int TimedInput() {
signal(SIGALRM, timeout);
if (sigsetjmp(context, 1) == 0) {

alarm(30); // cause SIGALRM in 30 seconds
GetInput(); // possible long wait for input
alarm(0); // cancel SIGALRM request
HandleInput();
return 0;

} else
return 1;

}

void timeout() {
siglongjmp(context, 1); /* legal but weird */

}

The effect of sigsetjmp is to save the registers relevant to the current stack frame; in
particular, the instruction pointer, the base pointer (if used), and the stack pointer, as
well as the return address and the current signal mask. A subsequent call to siglongjmp
restores the stack to what it was at the time of the call to sigsetjmp. Note that
siglongjmp should be called only from a stack frame that is farther on the stack than
the one in which sigsetjmp was called.

CS33 Intro to Computer Systems XXI–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

sigsetjmp/siglongjmp

sigsetjmp

siglongjmp

Stack

TimedInput

