
CS33 Intro to Computer Systems XXI–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Data Representation (Part 4)

CS33 Intro to Computer Systems XXI–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Normalized Encoding Example
• Value: float F = 15213.0;

– 1521310 = 111011011011012

= 1.11011011011012 x 213

• Significand
M = 1.11011011011012
frac = 110110110110100000000002

• Exponent
E = 13
bias = 127
exp = 140 = 100011002

• Result:

0 10001100 11011011011010000000000
s exp frac

CS33 Intro to Computer Systems XXI–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Denormalized Values

• Condition: exp = 000…0
• Exponent value: E = 1 – Bias (instead of E = 0 – Bias)
• Significand coded with implied leading 0:
M = 0.xxx…x2
– xxx…x: bits of frac, range [0,1)

• Cases
– exp = 000…0, frac = 000…0
» represents zero value
» note distinct values: +0 and –0 (why?)

– exp = 000…0, frac ≠ 000…0
» numbers closest to 0.0
» for S.P., range from .111...1 * 2-126 to .000...001 * 2-126

» smallest normalized value is 1.0 * 2-126

CS33 Intro to Computer Systems XXI–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Special Values

• Condition: exp = 111…1

• Case: exp = 111…1, frac = 000…0
– represents value ¥ (infinity)
– operation that overflows
– both positive and negative
– e.g., 1.0/0.0 = −1.0/−0.0 = +¥, 1.0/−0.0 = −¥

• Case: exp = 111…1, frac ≠ 000…0
– not-a-number (NaN)
– represents case when no numeric value can be determined
– e.g., sqrt(–1), ¥ − ¥, ¥ ´ 0

CS33 Intro to Computer Systems XXI–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Visualization: Floating-Point Encodings

+¥−¥

−0

+Denorm +Normalized−Denorm−Normalized

+0NaN NaN

CS33 Intro to Computer Systems XXI–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Mapping Real Numbers to Float

• The real number 3 is represented as
0 100 10

• The real number 3.5 is represented as
0 100 11

• How is the real number 3.4 represented?
0 100 11

• How is the real number 𝛑 represented?
0 100 10

010000 010001 010010 010011 010000

3 3.5
3.4𝛑

CS33 Intro to Computer Systems XXI–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Mapping Real Numbers to Float

• If R is a real number, itʼs mapped to the
floating-point number whose value is closest
to R

CS33 Intro to Computer Systems XXI–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Floats are Sets of Values

• If A, B, and C are successive floating-point
values
– e.g., 010001, 010010, and 010011

• B represents all real numbers from midway
between A and B through midway between B
and C

A B C

Real numbers
represented by B

CS33 Intro to Computer Systems XXI–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

+/− Zero

• Only one zero for ints
– an int is a single number, not a range of numbers,

thus there can be only zero
• Floating-point zero

– a range of numbers around the real 0
– it really matters which side of 0 we’re on!

» a very large negative number divided by a very small
negative number should be positive

−¥/−0 = +¥
» a very large positive number divided by a very small

negative number should be negative

+¥ /−0 = −¥

CS33 Intro to Computer Systems XXI–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Significance

• Normalized numbers
– for a particular exponent value E and an S-bit

significand, the range from 2E up to 2E+1 is divided
into 2S equi-spaced floating-point values
» thus each floating-point value represents 1/2S of the

range of values with that exponent
» all bits of the signifcand are important
» we say that there are S significant bits – for

reasonably large S, each floating-point value covers
a rather small part of the range
• high accuracy
• for S=23 (32-bit float), accurate to one in 223

(.0000119% accuracy)

CS33 Intro to Computer Systems XXI–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Significance

• Unnormalized numbers
– high-order zero bits of the significand arenʼt important
– in 32-bit floating point, 0 00000000

00000000000000000000001 represents 2-149
» it is the only value with that exponent: 1 significant bit

(either 2-149 or 0)
– 0 00000000 00000000000000000000010 represents 2-148

0 00000000 00000000000000000000011 represents 1.5*2-148
» only two values with exponent -148: 2 significant bits

(encoding those two values, as well as 2-149 and 0)
– fewer significant bits mean less accuracy
– 0 00000000 00000000000000000000001 represents a range

of values from .5*2-9 to 1.5*2-9
– 50% accuracy

CS33 Intro to Computer Systems XXI–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Floating Point

• Single precision (float)

– range: ±1.8×10-38 − ±3.4×1038, ~7 decimal digits

• Double Precision (double)

– range: ±2.23×10-308 − ±1.8×10308, ~16 decimal digits

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

CS33 Intro to Computer Systems XXI–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

Suppose f, declared to be a float, is assigned
the largest possible floating-point positive
value (other than +∞). What is the value of
g = f+1.0?

a) 0
b) f
c) +∞
d) NaN

CS33 Intro to Computer Systems XXI–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Float is not Rational …

• Floating addition
– commutative: a +f b = b +f a

» yes!
– associative: a +f (b +f c) = (a +f b) +f c

» no!
• 2 +f (1e38 +f -1e38) = 2
• (2 +f 1e38) +f -1e38 = 0

CS33 Intro to Computer Systems XXI–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Float is not Rational …

• Multiplication
– commutative: a *f b = b *f a

» yes!

– associative: a *f (b *f c) = (a *f b) *f c
» no!

• 1e37 *f (1e37 *f 1e-37) = 1e37

• (1e37 *f 1e37) *f 1e-37 = +¥

CS33 Intro to Computer Systems XXI–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Float is not Rational …

• More …
– multiplication distributes over addition:

a *f (b +f c) = (a *f b) +f (a *f c)
» no!
» 1e38 *f (1e38 +f -1e38) = 0
» (1e38 *f 1e38) +f (1e38 *f -1e38) = NaN

– insignificance:
x = y +f 1
z = 2 /f (x -f y)
z == 2?
» not necessarily!

• consider y = 1e38

CS33 Intro to Computer Systems XXI–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Signals Part 1

CS33 Intro to Computer Systems XXI–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

An Interlude Between Shells

• Shell 1
– it can run programs
– it can redirect I/O

• Signals
– a mechanism for coping with exceptions and

external events
– the mechanism needed for shell 2

• Shell 2
– it can control running programs

CS33 Intro to Computer Systems XXI–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Whoops …

$ SometimesUsefulProgram xyz
Are you sure you want to proceed?
Are you really sure?
Reformatting of your disk will begin
in 3 seconds.
Everything you own will be deleted.
There's little you can do about it.
Too bad …

Y
Y

Oh dear…

CS33 Intro to Computer Systems XXI–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

A Gentler Approach

• Signals
–get a process’s attention

» send it a signal
–process must either deal with it or be

terminated
» in some cases, the latter is the only option

CS33 Intro to Computer Systems XXI–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Stepping Back …

• What are we trying to do?
– interrupt the execution of a program

» cleanly terminate it
or

» cleanly change its course

– not for the faint of heart
» it’s difficult
» it gets complicated
» (not done in Windows)

CS33 Intro to Computer Systems XXI–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signals

• Generated (by OS) in response to
– exceptions (e.g., arithmetic errors, addressing

problems)
» synchronous signals

– external events (e.g., timer expiration, certain
keystrokes, actions of other processes)
» asynchronous signals

• Effect on process:
– termination (possibly producing a core dump)
– invocation of a function that has been set up to be a

signal handler
– suspension of execution
– resumption of execution

CS33 Intro to Computer Systems XXI–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signal Types

SIGABRT abort called term, core
SIGALRM alarm clock term
SIGCHLD death of a child ignore
SIGCONT continue after stop cont
SIGFPE erroneous arithmetic operation term, core
SIGHUP hangup on controlling terminal term
SIGILL illegal instruction term, core
SIGINT interrupt from keyboard term
SIGKILL kill forced term
SIGPIPE write on pipe with no one to read term
SIGQUIT quit term, core
SIGSEGV invalid memory reference term, core
SIGSTOP stop process forced stop
SIGTERM software termination signal term
SIGTSTP stop signal from keyboard stop
SIGTTIN background read attempted stop
SIGTTOU background write attempted stop
SIGUSR1 application-defined signal 1 stop
SIGUSR2 application-defined signal 2 stop

CS33 Intro to Computer Systems XXI–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Sending a Signal

• int kill(pid_t pid, int sig)
– send signal sig to process pid

• Also
– kill shell command
– type ctrl-c

» sends signal 2 (SIGINT) to current process
– type ctrl-\

» sends signal 3 (SIGQUIT) to current process
– type ctrl-z

» sends signal 20 (SIGTSTP) to current process
– do something bad

» bad address, bad arithmetic, etc.

CS33 Intro to Computer Systems XXI–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Handling Signals

#include <signal.h>

typedef void (*sighandler_t)(int);
sighandler_t signal(int signo,

sighandler_t handler);

sighandler_t OldHandler;

OldHandler = signal(SIGINT, NewHandler);

CS33 Intro to Computer Systems XXI–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Special Handlers

• SIG_IGN
– ignore the signal
–signal(SIGINT, SIG_IGN);

• SIG_DFL
–use the default handler

» usually terminates the process
–signal(SIGINT, SIG_DFL);

CS33 Intro to Computer Systems XXI–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Example

void sigloop() {
while(1)

;
}

int main() {
void handler(int);
signal(SIGINT, handler);
sigloop();
return 1;

}
void handler(int signo) {

printf("I received signal %d. "
"Whoopee!!\n", signo);

}

CS33 Intro to Computer Systems XXI–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Digression: Core Dumps

• Core dumps
– files (called “core”) that hold the contents of a

processʼs address space after termination by a
signal

– theyʼre large and rarely used, so theyʼre often
disabled by default

– use the ulimit command in bash to enable them

ulimit –c unlimited

– use gdb to examine the process (post-mortem
debugging)

gdb sig core

CS33 Intro to Computer Systems XXI–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

sigaction

int sigaction(int sig, const struct sigaction *new,
struct sigaction *old);

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;

};

int main() {
struct sigaction act; void myhandler(int);
sigemptyset(&act.sa_mask); // zeroes the mask
act.sa_flags = 0;
act.sa_handler = myhandler;
sigaction(SIGINT, &act, NULL);
…

}

CS33 Intro to Computer Systems XXI–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Example

int main() {
void handler(int);
struct sigaction act;
act.sa_handler = handler;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
sigaction(SIGINT, &act, 0);

while(1)
;

return 1;
}

void handler(int signo) {
printf("I received signal %d. "

"Whoopee!!\n", signo);
}

CS33 Intro to Computer Systems XXI–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

int main() {
void handler(int);
struct sigaction act;
act.sa_handler = handler;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
sigaction(SIGINT, &act, 0);

while(1)
;

return 1;
}

void handler(int signo) {
printf("I received signal %d. "

"Whoopee!!\n", signo);
}

You run the example program, then
quickly type ctrl-C. What is the most
likely explanation if the program then
terminates?

a) this “can’t happen”; thus
there’s a problem with the
system

b) you’re really quick or the
system is really slow (or both)

c) what we’ve told you so far
isn’t quite correct

CS33 Intro to Computer Systems XXI–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Waiting for a Signal …

signal(SIGALRM, RespondToSignal);

…

struct timeval waitperiod = {0, 1000};
/* seconds, microseconds */

struct timeval interval = {0, 0};
struct itimerval timerval;
timerval.it_value = waitperiod;
timerval.it_interval = interval;

setitimer(ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */
printf("success!\n");

CS33 Intro to Computer Systems XXI–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 3

signal(SIGALRM, RespondToSignal);

…

struct timeval waitperiod = {0, 1000};
/* seconds, microseconds */

struct timeval interval = {0, 0};
struct itimerval timerval;
timerval.it_value = waitperiod;
timerval.it_interval = interval;

setitimer(ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */
printf("success!\n");

This program is guaranteed to print
“success!”.

a) no
b) yes

CS33 Intro to Computer Systems XXI–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Masking Signals

setitimer(ITIMER_REAL, &timerval, 0);
/* SIGALRM sent in ~one millisecond */

pause(); /* wait for it */

No signals here, please!

CS33 Intro to Computer Systems XXI–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Masking Signals

mask SIGALRM
setitimer(ITIMER_REAL, &timerval, 0);

/* SIGALRM sent in ~one millisecond */

unmask and wait for SIGALRM

No signals here

CS33 Intro to Computer Systems XXI–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Doing It Safely
sigset_t set, oldset;
sigemptyset(&set);
sigaddset(&set, SIGALRM);
sigprocmask(SIG_BLOCK, &set, &oldset);

/* SIGALRM now masked */
…
setitimer(ITIMER_REAL, &timerval, 0);

/* SIGALRM sent in ~one millisecond */

sigsuspend(&oldset); /* unmask sig and wait */
/* SIGALRM masked again */

sigprocmask(SIG_SETMASK, &oldset, (sigset_t *)0);
/* SIGALRM unmasked */

printf("success!\n");

CS33 Intro to Computer Systems XXI–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signal Sets

• To clear a set:
int sigemptyset(sigset_t *set);

• To add or remove a signal from the set:
int sigaddset(sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);

• Example: to refer to both SIGHUP and SIGINT:
sigset_t set;

sigemptyset(&set);
sigaddset(&set, SIGHUP);
sigaddset(&set, SIGINT);

CS33 Intro to Computer Systems XXI–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Masking (Blocking) Signals

#include <signal.h>
int sigprocmask(int how, const sigset_t *set,

sigset_t *old);

– used to examine or change the signal mask of the calling
process
» how is one of three commands:

• SIG_BLOCK
– the new signal mask is the union of the current

signal mask and set
• SIG_UNBLOCK

– the new signal mask is the intersection of the
current signal mask and the complement of set

• SIG_SETMASK
– the new signal mask is set

CS33 Intro to Computer Systems XXI–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signal Handlers and Masking

• What if a signal occurs while a previous instance
is being handled?
– inconvenient …

• Signals are masked while being handled
– may mask other signals as well:

struct sigaction act; void myhandler(int);
sigemptyset(&act.sa_mask); // zeroes the mask
sigaddset(&act.sa_mask, SIGQUIT);

// also mask SIGQUIT
act.sa_flags = 0;
act.sa_handler = myhandler;
sigaction(SIGINT, &act, NULL);

CS33 Intro to Computer Systems XXI–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Timed Out!

int TimedInput() {
signal(SIGALRM, timeout);
…
alarm(30); /* send SIGALRM in 30 seconds */
GetInput(); /* possible long wait for input */
alarm(0); /* cancel SIGALRM request */
HandleInput();
return(0);

nogood:
return(1);

}

void timeout() {
goto nogood; /* not legal but straightforward */

}

CS33 Intro to Computer Systems XXI–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Doing It Legally (but Weirdly)
sigjmp_buf context;

int TimedInput() {
signal(SIGALRM, timeout);
if (sigsetjmp(context, 1) == 0) {

alarm(30); // cause SIGALRM in 30 seconds
GetInput(); // possible long wait for input
alarm(0); // cancel SIGALRM request
HandleInput();
return 0;

} else
return 1;

}

void timeout() {
siglongjmp(context, 1); /* legal but weird */

}

CS33 Intro to Computer Systems XXI–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

sigsetjmp/siglongjmp

sigsetjmp

siglongjmp

Stack

TimedInput

