
CS33 Intro to Computer Systems XXII–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Signals Part 2

In the code example, we are setting up a handler for the SIGINT signal. SIGINT will
automatically be masked while an occurrence of it is being handled, but the code
arranges so that SIGQUIT is also masked while SIGINT is being handled.

CS33 Intro to Computer Systems XXII–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signal Handlers and Masking

• What if a signal occurs while a previous instance
is being handled?

– inconvenient …
• Signals are masked while being handled

– may mask other signals as well:

struct sigaction act; void myhandler(int);
sigemptyset(&act.sa_mask); // zeroes the mask
sigaddset(&act.sa_mask, SIGQUIT);

// also mask SIGQUIT
act.sa_flags = 0;
act.sa_handler = myhandler;
sigaction(SIGINT, &act, NULL);

This slide sketches something that one might want to try to do: give a user a limited
amount of time (in this case, 30 seconds — the alarm function causes the system to
send the process a SIGALRM signal in the given number of seconds) to provide some
input, then, if no input, notify the caller that there is a problem. Here we’d like our
timeout handler to transfer control to someplace else in the program, but we can’t do
this.

CS33 Intro to Computer Systems XXII–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Timed Out!

int TimedInput() {
signal(SIGALRM, timeout);
…
alarm(30); /* send SIGALRM in 30 seconds */
GetInput(); /* possible long wait for input */
alarm(0); /* cancel SIGALRM request */
HandleInput();
return(0);

nogood:
return(1);

}

void timeout() {
goto nogood; /* not legal but straightforward */

}

To get around the problem of not being able to use a goto statement to get out of a
signal handler, we introduce the setjmp/longjmp facility, also known as the nonlocal
goto. A call to sigsetjmp stores context information (about the current locus of
execution) that can be restored via a call to siglongjmp. A bit more precisely: sigsetjmp
stores into its first argument the values of the program-counter (instruction-pointer),
stack-pointer, and other registers representing the process’s current execution context.
If the second argument is non-zero, the current signal mask is saved as well. The call
returns 0. When siglongjmp is called with a pointer to this context information as its
first argument, the current register values are replaced with those that were saved. If the
signal mask was saved, that is restored as well. The effect of doing this is that the
process resumes execution where it was when the context information was saved: inside
of sigsetjmp. However, this time, rather than returning zero, it returns the second
argument passed to siglongjmp (1 in the example).

To use this facility, you must include the header file setjmp.h.

CS33 Intro to Computer Systems XXII–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Doing It Legally (but Weirdly)
sigjmp_buf context;

int TimedInput() {
signal(SIGALRM, timeout);
if (sigsetjmp(context, 1) == 0) {

alarm(30); // cause SIGALRM in 30 seconds
GetInput(); // possible long wait for input
alarm(0); // cancel SIGALRM request
HandleInput();
return 0;

} else
return 1;

}

void timeout() {
siglongjmp(context, 1); /* legal but weird */

}

In this slide, we start off in TimedInput and call sigsetjmp. The effect of sigsetjmp is to
save the registers relevant to the current stack frame; in particular, the instruction
pointer, the base pointer (if used), and the stack pointer, as well as the return address
and the current signal mask. Thus when sigsetjmp returns, its context (including stack
frame) is saved in the jmpbuf. TimedInput calls GetInput and its stack frame is pushed
on the stack. If an alarm signal occurs, the stack frame for timeout is pushed on the
stack. The call to siglongjmp (from within Timeout) restores the stack to what it was at
the time of the call to sigsetjmp (including pushing its return address to TimedInput
onto the stack). Thus the stack pointer register now points to the same location as it did
when we first called sigsetjmp. and then sigsetjmp returns (again) to TimedInput, this
time returning a different value than it did the first time.

Note that siglongjmp should be called only from a stack frame that is farther on the
stack than the one in which sigsetjmp was called.

CS33 Intro to Computer Systems XXII–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

sigsetjmp/siglongjmp

sigsetjmp

siglongjmp

Stack

TimedInput

CS33 Intro to Computer Systems XXII–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Job Control
$ who

– foreground job
$ multiprocessProgram

– foreground job
^Z
stopped
$ bg
[1] multiprocessProgram &

– multiprocessProgram becomes background job 1
$ longRunningProgram &
[2]
$ fg %1
multiprocessProgram

– multiprocessProgram is now the foreground job
^C
$

CS33 Intro to Computer Systems XXII–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Process Groups

• Set of processes sharing the
window/keyboard

– sometimes called a job
• Foreground process group/job

– currently associated with window/keyboard
– receives keyboard-generated signals

• Background process group/job
– not currently associated with window/keyboard
– doesn’t currently receive keyboard-generated

signals

Each terminal window has a process group associated with it — this defines the current
foreground process group. Keyboard-generated signals are sent to all processes in the
current window’s process group. This group normally consists of the shell and any of its
descendents that have not been moved to other process groups.

CS33 Intro to Computer Systems XXII–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Keyboard-Generated Signals

• You type ctrl-C
• How does the system know which

process(es) to send the signal to?

Window

pid 16
pgroup 16

pgroup 16

Shell

When you type a command into the shell without an ampersand, the shell makes sure
that all the processes of that command are in a separate process group, shared with no
other processes. The shell changes the window’s process group to be that of the job, so
that keyboard-generated signals are directed to the processes of the job and not to the
shell. A process group’s ID is the pid of its first member.

CS33 Intro to Computer Systems XXII–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Foreground Job

Window Shell

pid 16
pgroup 16

pgroup 17

pid 17

pid 23

pid 42

pgroup 17

$ multiprocessProgram
^C

Keyboard-generated signals are not delivered to background jobs (for example,
commands that are typed in with ampersands).

CS33 Intro to Computer Systems XXII–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Background Job

Window Shell

pid 16
pgroup 16

pgroup 16

pid 164

pid 179

pid 196

pgroup 164

$ multiprocessProgram2 &
$ ^C

When you stop (or, synonymously, suspend) a foreground job, its execution is
suspended (by sending it a SIGTSTP) and it is replaced as the foreground job by the
shell.

CS33 Intro to Computer Systems XXII–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Stopping a Foreground Job

Window Shell

pid 16
pgroup 16

pgroup 16

pid 17

pid 23

pid 42

pgroup 17

$ multiprocessProgram
^Z
[2] stopped
$

pgroup 17

If you then give the bg command to the shell, the most recently suspended job is sent a
SIGCONT, which causes it to resume execution in the background, while the shell
continues as the foreground job.

CS33 Intro to Computer Systems XXII–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Backgrounding a Stopped Job

Window Shell

pid 16
pgroup 16

pgroup 16

pid 17

pid 23

pid 42

pgroup 17

$ multiprocessProgram
^Z
[2] stopped
$
$
bg

The fg command brings a job back to the foreground. Given with no arguments, the
most recently suspended or backgrounded job is brought to the foreground, otherwise
the argument specifies which job to bring to the foreground. In our example, the job that
is being brought to the foreground is currently running in the background, so all that's
necessary is for the shell to change the process group of the window and then wait for
the job to terminate.

CS33 Intro to Computer Systems XXII–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

pgroup 16

Foregrounding a Job

Window Shell

pid 16
pgroup 16

pgroup 17

pid 17

pid 23

pid 42

pgroup 17

$ multiprocessProgram
^Z
[2] stopped
$ bg
$ fg %2

CS33 Intro to Computer Systems XXII–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

$ long_running_prog1 &
$ long_running_prog2

^Z
[2] stopped
$ Which process group receives the

SIGINT signal?
a) the one containing

long_running_prog1
b) the one containing

long_running_prog2
c) the one containing the shell

^C

The first argument to setpgid is the process ID of the process whose process group is
being changed; 0 means the pid of the calling process. The second argument is the ID of
the process group it’s being added to. If it’s 0, then a new group is created whose ID is
that of the calling process. Future children of this process join the new process group.

CS33 Intro to Computer Systems XXII–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Creating a Process Group

if (fork() == 0) {

// child
setpgid(0, 0);

/* puts current process into a
new process group whose ID is
the process’s pid.

Children of this process will be in
this process's process group.

*/
...
execv(...);

}
// parent

The tcsetpgrp command sets the process group associated with a terminal (i.e., a
window), thus setting that process group to be the foreground process group.

CS33 Intro to Computer Systems XXII–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Setting the Foreground Process Group

tcsetpgrp(fd, pgid);
// sets the process group of the

// terminal (window) referenced by
// file descriptor fd to be pgid

CS33 Intro to Computer Systems XXII–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Background Input and Output

• Background process reads from keyboard
– the keyboard really should be reserved for

foreground process
– background process gets SIGTTIN

» suspends it by default

• Background process writes to display
– display also used by foreground process
– could be willing to share
– background process gets SIGTTOU

» suspends it (by default)
» but reasonable to ignore it

CS33 Intro to Computer Systems XXII–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Kill: Details

• int kill(pid_t pid, int sig)
– if pid > 0, signal sig sent to process pid
– if pid == 0, signal sig sent to all processes in the

caller’s process group
– if pid == −1, signal sig sent to all processes in the

system for which sender has permission to do so
– if pid < −1, signal sig is sent to all processes in

process group −pid

A Unix process is always in one of three states, as shown in the slide. When created, the
process is put in the active state. When a process terminates, its parent might wish to
find out and, perhaps, retrieve the exit value. Thus when a process terminates, some
information about it must continue to exist until passed on to the parent (via the
parent’s executing the wait or waitpid system call). So, when a process calls exit, it
enters the zombie state and its exit code is kept around. Furthermore, the process’s ID
is preserved so that it cannot be reused by a new process. Once the parent does its wait,
the exit code and process ID are no longer needed, so the process completely disappears
and is marked as being in the non-existent state — it doesn’t exist anymore. The
process ID may now be reused by a new process.

CS33 Intro to Computer Systems XXII–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Process Life Cycle

ActiveNon-
Existent Zombie

A process may wait only for its children to terminate (this excludes grandchildren).

CS33 Intro to Computer Systems XXII–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Reaping: Zombie Elimination

• Shell must call waitpid on each child
– easy for foreground processes
– what about background?

pid_t waitpid(pid_t pid, int *status, int options);

– pid values:
< −1 any child process whose process group is |pid|
−1 any child process
0 any child process whose process group is that of caller
> 0 child process whose ID is equal to pid

− wait(&status) is equivalent to waitpid(-1, &status, 0)

If a process is found, waitpid returns the process ID of the process that has been
suspended or resumed.

CS33 Intro to Computer Systems XXII–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

(continued)

pid_t waitpid(pid_t pid, int *status, int options);

– options are some combination of the following
» WNOHANG

• return immediately if no child has exited (returns 0)
» WUNTRACED

• also return if a child has been stopped (suspended)
» WCONTINUED

• also return if a child has been continued (resumed)

CS33 Intro to Computer Systems XXII–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

When to Call waitpid

• Shell reports status only when it is about to
display its prompt

– thus sufficient to check on background jobs just
before displaying prompt

These are macros that can be applied to the status output argument of waitpid. Note
that “terminated normally” means that the process terminated by calling exit.
Otherwise, it was terminated because it received a signal, which it neither ignored nor
had a handler for, whose default action was termination.

CS33 Intro to Computer Systems XXII–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

waitpid status

• WIFEXITED(*status): 1 if the process terminated normally
and 0 otherwise

• WEXITSTATUS(*status): argument to exit
• WIFSIGNALED(*status): 1 if the process was terminated

by a signal and 0 otherwise
• WTERMSIG(*status): the signal which terminated the

process if it terminated by a signal
• WIFSTOPPED(*status): 1 if the process was stopped by a

signal
• WSTOPSIG(*status): the signal which stopped the

process if it was stopped by a signal
• WIFCONTINUED(*status): 1 if the process was resumed

by SIGCONT and 0 otherwise

This code might be executed by a shell just before it displays its prompt. The loop
iterates through all child processes that have either terminated or stopped. The
WNOHANG option causes waitpid to return 0 (rather than waiting) if the caller has
extant children, but there are no more that have either terminated or stopped. If the
caller has no children, then waitpid returns -1.

CS33 Intro to Computer Systems XXII–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Example (in Shell)
int wret, wstatus;
while ((wret = waitpid(-1, &wstatus, WNOHANG|WUNTRACED)) > 0){
// examine all children who’ve terminated or stopped
if (WIFEXITED(wstatus)) {
// terminated normally
...

}
if (WIFSIGNALED(wstatus)) {
// terminated by a signal
...

}
if (WIFSTOPPED(wstatus)) {
// stopped
...

}
}

The init process is the common ancestor of all other processes in the system. It
continues to exist while the system is running. It starts things going soon after the
system is booted by forking child processes that exec the login code. These login
processes then exec the shell. Note that, since only the parent may wait for a child’s
termination, only parent-child relationships are maintained between processes.

CS33 Intro to Computer Systems XXII–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Process Relationships (1)

Init

Login 1 Login 2 Login 3

cmd cmd cmd cmd cmd

Sub proc. Sub proc.

When a process terminates, all of its children are inherited by the init process, process
number 1.

CS33 Intro to Computer Systems XXII–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Process Relationships (2)

Init

Login 1 Login 2 Login 3

cmd cmd cmd cmd cmd

Sub proc. Sub proc.

CS33 Intro to Computer Systems XXII–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Process Relationships (3)

Init

Login 1 Login 2 Login 3

cmd cmd cmd cmd cmd

Sub proc. Sub proc.

As makes sense, the signal-handling state of the parent is reproduced in the child.

What also makes sense is that, if a signal has been given a handler, then, after an exec,
since the handler no longer exists, the signal reverts to default actions.

What at first glance makes less sense is that ignored signals stay ignored after an exec
(of course, signals with default action stay that way after the exec). The intent is that
this allows one to run a program protected from certain signals.

CS33 Intro to Computer Systems XXII–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signals, Fork, and Exec

// set up signal handlers ...
if (fork() == 0) {

// what happens if child gets signal?
...
signal(SIGINT, SIG_IGN);
signal(SIGFPE, handler);
signal(SIGQUIT, SIG_DFL);

execv("new prog", argv, NULL);
// what happens if SIGINT, SIGFPE,
// or SIGQUIT occur?

}

It’s generally unsafe to interrupt the execution of a process while it’s in the midst of
doing a system call. Thus, if a signal is sent to a process while it’s in a system call, it’s
usually not acted upon until just before the process returns from the system call back to
the user code. At this point the handler (if any) is executed. When the handler returns,
normal execution of the the user process resumes and it returns from the system call.

CS33 Intro to Computer Systems XXII–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signals and System Calls

• What happens if a signal occurs while a
process is doing a system call?

– handler not invoked until just before system call
returns to user
» system call might terminate early because of signal

– system call completes
– signal handler is invoked
– user code resumed as if the system call has just

returned

Some system calls take a long time to execute. Such calls might be broken up into a
sequence of discrete steps, where it’s safe to check for and handle signals after each
step. For example, if a process is writing multiple gigabytes of data to a file in a single
call to write, the kernel code it executes will probably break this up into a number of
smaller writes, done one at a time. After each write completes, it checks to see if any
unmasked signals are pending.

CS33 Intro to Computer Systems XXII–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signals and Lengthy System Calls

• Some system calls take a long time
– large I/O transfer

» multi-gigabyte read or write request probably done
as a sequence of smaller pieces

– a long wait is required
» a read from the keyboard requires waiting for

someone to type something
• If signal arrives in the midst of lengthy

system call, handler invoked:
– after current piece is completed
– after cancelling wait

What happens to the system call after the signal handling completes (assuming that the
process has not been terminated)? The system call effectively terminated when the
handler was called. When the handler returns, the system call either returns an
indication of how far it progressed before being interrupted by the signal (it would return
the number of bytes actually transferred, as opposed to the number of bytes requested)
or, if it was interrupted before anything actually happened, it returns an error indication
and sets errno to EINTR (meaning ”interrupted system call”).

CS33 Intro to Computer Systems XXII–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Interrupted System Calls

• What if a signal is handled before the
system call completes?
– invoke handler, then return from system

call prematurely
• if one or more pieces were completed,

return total number of bytes transferred
• otherwise return “interrupted” error

If a non-lengthy system call is interrupted by a signal, the call fails and the error code
EINTR is put in errno. The process then executes the signal handler and then returns to
the point of the interrupt, which causes it to (finally) return from the system call with
the error.

CS33 Intro to Computer Systems XXII–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Interrupted System Calls: Non-
Lengthy Case

while(read(fd, buffer, buf_size) == –1) {
if (errno == EINTR) {
/* interrupted system call — try again */
continue;

}
/* the error is more serious */
perror("big trouble");
exit(1);

}

CS33 Intro to Computer Systems XXII–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

int ret;

char buf[1024*1024*1024];

fillbuf(buf);

ret = write(1, buf, 1024*1024*1024);

• The value of ret is:
a) any integer in the range [-1, 1024*1024*1024]
b) either -1 or 1024*1024*1024
c) either -1, 0, or 1024*1024*1024

The actions of some system calls are broken up into discrete steps. For example, if one
issues a system call to write a gigabyte of data to a file, the write will actually be split by
the kernel into a number of smaller writes. If the system call is interrupted by a signal
after the first component of the write has completed (but while there are still more to be
done), it would not make sense for the call to return an error code: such an error return
would convince the program that none of the write had completed and thus all should
be redone. Instead, the call completes successfully: it returns the number of bytes
actually transferred, the signal handler is invoked, and, on return from the signal
handler, the user program receives the successful return from the (shortened) system
call.

CS33 Intro to Computer Systems XXII–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Interrupted System Calls: Lengthy
Case

char buf[BSIZE];
fillbuf(buf);
long remaining = BSIZE;
char *bptr = buf;
while (1){
long num_xfrd = write(fd,

bptr, remaining);
if (num_xfrd == –1) {
if (errno == EINTR) {
// interrupted early
continue;

}
perror("big trouble");
exit(1);

}

if (num_xfrd < remaining) {
/* interrupted after the

first step */
remaining -= num_xfrd;
bptr += num_xfrd;
continue;

}
// success!
break;

}

Let’s look at some of the typical uses for asynchronous signals. Perhaps the most
common is to force the termination of the process. When the user types control-C, the
program should terminate. There might be a handler for the signal, so that the program
can clean up and then terminate.

CS33 Intro to Computer Systems XXII–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (1)

main() {
void handler(int);
signal(SIGINT, handler);

... /* long-running buggy code */

}

void handler(int sig) {
... /* clean up */
exit(1);

}

Here we are using a signal to send a request to a running program: when the user types
control-C, the program prints out its current state and then continues execution. If
synchronization is necessary so that the state is printed only when it is stable, it must
be provided by appropriate settings of the signal mask.

CS33 Intro to Computer Systems XXII–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (2)

computation_state_t state;

main() {
void handler(int);

signal(SIGINT, handler);

long_running_procedure();
}

long_running_procedure() {

while (a_long_time) {
update_state(&state);
compute_more();

}
}

void handler(int sig) {
display(&state);

}

In this example, both the mainline code and the signal handler call myputs, which is
similar to the standard-I/O routine puts. It’s possible that the signal invoking the
handler occurs while the mainline code is in the midst of the call tomyputs. Could this
be a problem?

CS33 Intro to Computer Systems XXII–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (3)

main() {
void handler(int);

signal(SIGINT, handler);

... /* complicated program */

myputs("important message\n");

... /* more program */

}

void handler(int sig) {

... /* deal with signal */

myputs("equally important "
"message\n");

}

Here’s the implementation of myputs, used in the previous slide. What it does is copy
the input string, one character at a time, into buf, which is of size BSIZE. Whenever a
newline character is encountered, the current contents of buf up to that point are
written to standard output, then subsequent characters are copied starting at the
beginning of buf. Similarly, if buf is filled, its contents are written to standard output
and subsequent characters are copied starting at the beginning of buf. Since buf is
global, characters not written out may be written after the next call to myput. Note that
printf (and other stdio routines) buffers output in a similar way.

The point of myputs is to minimize the number of calls to write, so that write is called
only when we have a complete line of text or when its buffer is full.

However, consider what happens if execution is in the middle of myputs when a signal
occurs, as in the previous slide. Among the numerous problem cases, suppose myput
is interrupted just after pos is set to -1 (if the code hadn’t had been interrupted, pos
would be soon incremented by 1). The signal handler now calls myputs, which copies
the first character of str into buf[pos], which, in this case, is buf[-1]. Thus the first
character “misses” the buffer. At best it simply won’t be printed, but there might well be
serious damage done to the program.

CS33 Intro to Computer Systems XXII–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (4)

char buf[BSIZE];
int pos;
void myputs(char *str) {
int len = strlen(str);
for (int i=0; i<len; i++, pos++) {
buf[pos] = str[i];
if ((buf[pos] == '\n') || (pos == BSIZE-1)) {
write(1, buf, pos+1);
pos = -1;

}
}

}

To deal with the problem on the previous page, we must arrange that signal handlers
cannot destructively interfere with the operations of the mainline code. Unless we are
willing to work with signal masks (which can be expensive), this means we must restrict
what can be done inside a signal handler. Routines that, when called from a signal
handler, do not interfere with the operation of the mainline code, no matter what that
code is doing, are termed async-signal safe. The POSIX 1003.1 spec requires the
functions shown in the slide to be async-signal safe.

Note that POSIX specifies only those functions that must be async-signal safe.
Implementations may make other functions async-signal safe as well.

CS33 Intro to Computer Systems XXII–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Async-Signal Safety

• Which library functions are safe to use within
signal handlers?

– abort
– accept
– access
– aio_error
– aio_return
– aio_suspend
– alarm
– bind
– cfgetispeed
– cfgetospeed
– cfsetispeed
– cfsetospeed
– chdir
– chmod
– chown
– clock_gettime
– close
– connect
– creat
– dup

– dup2
– execle
– execve
– _exit
– fchmod
– fchown
– fcntl
– fdatasync
– fork
– fpathconf
– fstat
– fsync
– ftruncate
– getegid
– geteuid
– getgid
– getgroups
– getpeername
– getpgrp
– getpid

– getppid
– getsockname
– getsockopt
– getuid
– kill
– link
– listen
– lseek
– lstat
– mkdir
– mkfifo
– open
– pathconf
– pause
– pipe
– poll
– posix_trace_event
– pselect
– raise
– read

– readlink
– recv
– recvfrom
– recvmsg
– rename
– rmdir
– select
– sem_post
– send
– sendmsg
– sendto
– setgid
– setpgid
– setsid
– setsockopt
– setuid
– shutdown
– sigaction
– sigaddset
– sigdelset

– sigemptyset
– sigfillset
– sigismember
– signal
– sigpause
– sigpending
– sigprocmask
– sigqueue
– sigsuspend
– sleep
– sockatmark
– socket
– socketpair
– stat
– symlink
– sysconf
– tcdrain
– tcflow
– tcflush
– tcgetattr

– tcgetpgrp
– tcsendbreak
– tcsetattr
– tcsetpgrp
– time
– timer_getoverrun
– timer_gettime
– timer_settime
– times
– umask
– uname
– unlink
– utime
– wait
– waitpid
– write

CS33 Intro to Computer Systems XXII–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 3

Printf is not listed as being async-signal safe.
Can it be implemented so that it is?

a) yes, but it would be so complicated, it’s not done
b) yes, it can be easily made async-signal safe
c) no, it’s inherently not async-signal safe

