
CS33 Intro to Computer Systems XXIV–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Linkers

CS33 Intro to Computer Systems XXIV–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

gcc Steps

1) Compile
– to start here, supply .c file
– to stop here: gcc -S (produces .s file)
– if not stopping here, gcc compiles directly into a

.o file, bypassing the assembler
2) Assemble

– to start here, supply .s file
– to stop here: gcc -c (produces .o file)

3) Link
– to start here, supply .o file

The technology described here is current as of around 1990 and is known as static
linking. We discuss static linking first, then move on to dynamic linking (in a few
weeks), which is commonplace today.

CS33 Intro to Computer Systems XXIV–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

The Linker

• An executable program is one that is ready to
be loaded into memory

• The linker (known as ld: /usr/bin/ld) creates
such executables from:
– object files produced by the compiler/assembler
– collections of object files (known as libraries or

archives)
– and more we’ll get to soon ...

CS33 Intro to Computer Systems XXIV–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Linker’s Job

• Piece together components of program
– arrange within address space

» code (and read-only data) goes into text region
» initialized data goes into data region
» uninitialized data goes into bss region

• Modify address references, as necessary

The code is an implementation of the “sieve of Eratosthenes”, an early (~200 BCE)
algorithm for enumerating prime numbers. The idea is to iterate through the positive
integers. 2 is the first prime number. 3 is prime, since it’s not divisible by 2. 4 is not
prime, since it is divisible by 2. 5 is not prime, since it’s not divisible by any of the
primes discovered so far (5 is less than the largest’s square). This continues ad
infinitum.

The malloc function allocates storage within the dynamic region. We discuss it in detail
in an upcoming lecture.

CS33 Intro to Computer Systems XXIV–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

A Program
int nprimes = 100;
int *prime, *prime2;
int main() {

int i, j, current = 1;
prime = (int *)malloc(nprimes*sizeof(*prime));
prime2 = (int *)malloc(nprimes*sizeof(*prime2));
prime[0] = 2; prime2[0] = 2*2;
for (i=1; i<nprimes; i++) {
NewCandidate:

current += 2;
for (j=0; prime2[j] <= current; j++) {

if (current % prime[j] == 0)

goto NewCandidate;
}
prime[i] = current; prime2[i] = current*current;

}
return 0;

}

data

bss

dynamic

text

What this program actually does isn't all that important for our discussion. However, it
prints out the vector of prime numbers in multiple columns.

CS33 Intro to Computer Systems XXIV–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

... with Output
int nprimes = 100;
int *prime, *prime2;
int main() {

...
printcol(5);
return 0;

}

void printcol(int ncols) {

int i, j;
int nrows = (nprimes+ncols-1)/ncols;
for (i = 0; i<nrows; i++) {

for (j=0; (j<ncols) && (i+nrows*j < nvals); j++) {
printf("%6d", prime[i + nrows*j]);

}

printf("\n");
}

}

In the first two invocations of gcc, the “-c” flag tells it to compile the C code and produce
an object (“.o”) file, but not to go any further (and thus not to produce an executable
program). In the third invocation, gcc invokes the ld (linker) program to combine the two
object files into an executable program. As we discuss soon, it will also bring in code
(such as printf) from libraries.

CS33 Intro to Computer Systems XXIV–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

... Compiled Separately

int nprimes = 100;
int *prime, *prime2;
int main() {

...
printcol(5);
return 0;

}

extern int nprimes;
int *prime;
void printcol(int ncols) {

int i, j;
int nrows = (nprimes+ncols-1)/ncols;
for (i = 0; i<nrows; i++) {

for (j=0; (j<ncols)
&& (i+nrows*j < nvals); j++) {

printf("%6d", prime[i + nrows*j]);
}
printf("\n");

}
}

primes.c

printcol.cgcc –c primes.c
gcc –c printcol.c
gcc –o primes primes.o printcol.o

should refer to same thing

ditto

BSS is a mnemonic from an ancient assembler (not as ancient as Eratosthenes) and
stands for “block started by symbol”, a rather meaningless phrase. The BSS section of
the address space is where all uninitialized global and static local variables are placed.
When the program starts up, this entire section is filled with zeroes.

CS33 Intro to Computer Systems XXIV–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Global Variables

• Initialized vs. uninitialized
– initialized allocated in data section
– uninitialized allocated in bss section

» implicitly initialized to zero
• File scope vs. program scope

– static global variables known only within file that
declares them
» two of same name in different files are different
» e.g., static int X;

– non-static global variables potentially shared
across all files
» two of same name in different files are same
» e.g., int X;

CS33 Intro to Computer Systems XXIV–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Scope

static int X;
int Y;

void func1(...) {
...

}

file1.c

static int X;
int Y;

void func2(...) {
...

}

file2.c

different

same

Static local variables have the same scope as other local variables, but their
values are retained across calls to the procedures they are declared in. Like
global variables, uninitialized static local variables are stored in the BSS
section of the address space (and implicitly initialized to zero), initialized static
local variables are stored in the data section of the address space.

CS33 Intro to Computer Systems XXIV–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Static Local Variables

int *sub1() {

int var = 1;
…
return &var;
/* amazingly illegal */

}

int *sub2() {

static int var = 1;
…
return &var;
/* (amazingly) legal */

}

X goes in the data section and has an initial value of 1. If file2.c did not exist, then X
would go in the bss section and have an initial value of 0. Note that the textbook calls
tentative definitions “weak definitions” and complete definitions “strong definitions”.
This is non-standard terminology and conflicts with the standard use of the term “weak
definition,” which we discuss shortly.

CS33 Intro to Computer Systems XXIV–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Reconciling Program Scope (1)

int X;

void func1(...) {
...

}

file1.c

int X=1;

void func2(...) {
...

}

file2.c

Where does X go?
What’s its initial value?

tentative definition (complete) definition

• tentative definitions overridden by compatible (complete) definitions
• if not overridden, then initial value is zero

In this case we have conflicting definitions of X — this will be flagged (by the ld program)
as an error.

CS33 Intro to Computer Systems XXIV–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Reconciling Program Scope (2)

int X=2;

void func1(...) {
...

}

file1.c

int X=1;

void func2(...) {
...

}

file2.c

What happens here?

No; it is flagged as an error: only one file may supply an initial value.

CS33 Intro to Computer Systems XXIV–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Reconciling Program Scope (3)

int X=1;

void func1(...) {
...

}

file1.c

int X=1;

void func2(...) {
...

}

file2.c

Is this ok?

The “extern” means that this file will be using X, but it depends on some other file to
provide a definition for it, either initialized of uninitialized. If no other file provides a
definition, then ld flags an error.

If the “extern” were not there, i.e., if X were declared simply as an “int” in file1.c, then it
wouldn’t matter if no other file provided a definition for X — X would be allocated in bss
with an implicit initial value of 0.

Note: this description of extern is how it is implemented by gcc. The official C99
standard doesn’t require this behavior, but merely permits it. It also permits “extern” to
be essentially superfluous: its presence may mean the same thing as its absence.

The C11 standard more-or-less agrees with the C99 standard. Moreover, it explicitly
allows a declaration of the form “extern int X=1;” (i.e., initialization), which is not allowed
by gcc.

For most practical purposes, whatever gcc says is the law ...

CS33 Intro to Computer Systems XXIV–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Reconciling Program Scope (4)

extern int X;

void func1(...) {
...

}

file1.c

int X=1;

void func2(...) {
...

}

file2.c

What’s the purpose of “extern”?

CS33 Intro to Computer Systems XXIV–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Default Values (1)
float seed = 1.0;

int PrimaryFunc(float arg) {
...
SecondaryFunc(arg + seed);
...

}

void SecondaryFunc(float arg) {
...

}

The code in this slide will use the code in the previous slide, however, we would like to
override the previous slide’s definitions of seed and SecondaryFunc. The linker will not
allow this and would flag “duplicate-definition” errors.

CS33 Intro to Computer Systems XXIV–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Default Values (2)
float seed = 2.0; /* want a different seed */

int main() {
...
PrimaryFunc(floatingValue);
...

}

void SecondaryFunc(float arg) {
/* would like to override default version */
...

}

By defining seed and SecondaryFunc to be weak symbols, we can indicate that they
may be overridden. If there is no other definition for a weak symbol, the “weak”
definition will be used. Otherwise, the other definition will be used.

CS33 Intro to Computer Systems XXIV–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Default Values (3)
__attribute__((weak)) float seed = 1.0;

int PrimaryFunc(float arg) {
...
SecondaryFunc(arg + seed);
...

}

void __attribute__((weak)) SecondaryFunc(float arg) {
...

}

This rather trivial program references memory via only rsp and rip (rbp is set from rsp).
Its code contains no explicit references to memory, i.e., it contains no explicit addresses.

CS33 Intro to Computer Systems XXIV–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Does Location Matter?

int main(int argc, char *[]) {
return(argc);

}

main:
pushq %rbp ; push frame pointer
movq %rsp, %rbp ; set frame pointer to point to new frame
movl %edi, %eax ; put argc into return register (eax)
movq %rbp, %rsp ; restore stack pointer
popq %rbp ; pop stack into frame pointer
ret ; return: pops end of stack into rip

We don’t need to look at the assembler code to see what’s different about this program:
the machine code produced for it can’t simply be copied to an arbitrary location in our
computer’s memory and executed. The location identified by the name aX should
contain the address of the location containing X. But since the address of X will not be
known until the program is copied into memory, neither the compiler nor the assembler
can initialize aX correctly. Similarly, the addresses of subr and printf are not known
until the program is copied into memory — again, neither the compiler nor the
assembler would know what addresses to use.

CS33 Intro to Computer Systems XXIV–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Location Matters …

int X=6;
int *aX = &X;

int main() {
void subr(int);
int y=*aX;
subr(y);
return(0);

}

void subr(int i) {
printf("i = %d\n", i);

}

CS33 Intro to Computer Systems XXIV–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Coping

• Relocation
– modify internal references according to where

module is loaded in memory
– modules needing relocation are said to be
relocatable
» which means they require relocation

– the compiler/assembler provides instructions to the
linker on how to do this

Note that what we did, in order to obtain what’s in the next few slides, was:

gcc –S –O1 main.c subr.c
gcc –c main.s subr.s
gcc –o prog main.o subr.o

CS33 Intro to Computer Systems XXIV–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

A Revised Version of Our Program

extern int X;
int *aX = &X;
int Y = 1;

int main() {
void subr(int);
int y = *aX+Y;
subr(y);
return(0);

}

#include <stdio.h>
int X;

void subr(int XX) {
printf("XX = %d\n", XX);
printf("X = %d\n", X);

}

main.c

subr.c

gcc –o prog –O1 main.c subr.c

Note that a symbol’s value is the location of what it refers to. The compiler/assembler
knows what the values (i.e., locations) of aX and Y are relative to the beginning of this
module’s data section (next slide), but has no idea what subr’s value is. It is the linker’s
job to provide final values for these symbols, which will be the addresses of the
corresponding C constructs when the program is loaded into memory. The linker will
adjust these values to obtain the locations of what they refer to relative to the value of
register rip when the referencing instructions are executed.

One might ask why these locations are referred to using offsets from the instruction
pointer (also known as the program counter), rather than simply using their addresses.
The reason is to save space: the addresses would be 64 bits long, but the offsets are only
32 bits long.

The “.file” directive supplies information to be placed in the object file and the executable
of use to debuggers — it tells them what the source-code file is.
The “.globl” directive indicates that the symbol, defined here, will be used by other
modules, and thus should be made known to the linker.
The “.type” directive indicates how the symbol is used. Two possibilities are function and
object (meaning a data object).
The “ .size” directive indicates the size that should be associated with the given symbol.

The directives starting with “.cfi_” are there for the sake of the debugger. They generate
auxiliary information stored in the object file (but not executed) that describes the
relation between the stack pointer (%rsp) and the beginning of the stack frame. Thus

CS33 Intro to Computer Systems XXIV–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

main.s (1)
.file "main.c"

0: .text
0: .globl main
0: .type main, @function
0: main:
0: .LFB0:
0: .cfi_startproc
0: subq $8, %rsp
4: .cfi_def_cfa_offset 16
4: movq aX(%rip), %rax
11: movl (%rax), %edi
13: addl Y(%rip), %edi
19: call subr
24: movl $0, %eax
29: addq $8, %rsp
33: .cfi_def_cfa_offset 8
33: ret
34: .cfi_endproc
34:.LFE0:
34: .size main, .-main

must be replaced with aX’s
address, expressed as an offset
from the next instruction

must be replaced with Y’s
address, expressed as an offset
from the next instruction

must be replaced with subr’s
address, expressed as an offset
from the next instruction

they compensate for the lack of a standard frame-pointer register (%esp for IA32). In
particular, they emit data going into a table that is used by a debugger (such as gdb) to
determine, based on the value of the instruction pointer (%rip) and the stack pointer,
where the beginning of the current stack frame is.

The symbol X’s value is, at this point, unknown.

The “.data” directive indicates that what follows goes in the data section.

The “.long” directive indicates that storage should be allocated for a long word.

The “.quad” directive indicates that storage should be allocated for a quad word.

The “.align” directive indicates that the storage associated with the symbol should be
aligned, in the cases here, on 4-byte and 8-byte boundaries (i.e., the least-significant
two bits and three bits of their addresses should be zeroes).

The “.ident” directive indicates the software used to produce the file and its version.

The “.section” directive used here is supplied by gcc by default and indicates that the
program should have a non-executable stack (this is important for security purposes).

CS33 Intro to Computer Systems XXIV–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

main.s (2)

.globl Y
0: .data
0: .align 4
0: .type Y, @object
0: .size Y, 4
0: Y:
0: .long 1
4: .globl aX
8: .align 8
8: .type aX, @object
8: .size aX, 8
8: aX:
8: .quad X
8: .ident "GCC: (Debian 4.7.2-5) 4.7.2"
0: .section .note.GNU-stack,"",@progbits

must be replaced with
address of X

Y should be made
known to others

aX should be made
known to others

The “.section” directive here indicates that what follows should be placed in read-only
storage (and will be included in the text section). Furthermore, what follows are strings
with a one-byte-per-character encoding that require one-byte (i.e., unrestricted)
alignment. This information will ultimately be used by the linker to reduce storage by
identifying strings that are suffices of others.

CS33 Intro to Computer Systems XXIV–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

subr.s (1)

.file "subr.c"
0: .section .rodata.str1.1,"aMS",@progbits,1
0: .LC0:
0: .string "XX = %d\n"
9: .LC1:
9: .string "X = %d\n"

Note that the compiler has generated movl instructions (copying 32 bits) for copying the
addresses of .LC0 and .LC1: it’s assuming that both addresses will fit in 32 bits (in other
words, that the text section of the program will be less than 232 bytes long — probably a
reasonable assumption.

CS33 Intro to Computer Systems XXIV–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

subr.s (2)
0: .text
0: .globl subr
0: .type subr, @function
0: subr:
0: .LFB11:
0: .cfi_startproc
0: subq $8, %rsp
4: .cfi_def_cfa_offset 16
4: movl %edi, %esi
6: movl $.LC0, %edi
11: movl $0, %eax
16: call printf
21: movl X(%rip), %esi
27: movl $.LC1, %edi
32: movl $0, %eax
37: call printf
42: addq $8, %rsp
46: .cfi_def_cfa_offset 8
46: ret
47: .cfi_endproc
47:.LFE11:
47: .size subr, .-subr

must be replaced with
.LC0’s address

must be replaced with
.LC1’s address

must be replaced with printf’s
address, expressed as an offset
from the next instruction

subr should be made
known to others

The “.comm” directive indicates here that four bytes of four-byte aligned storage are
required for X in BSS. “comm” stands for “common”, which is what the Fortran language
uses to mean the same thing as BSS. Since Fortran predates pretty much everything
(except for Eratosthenes), its terminology wins (at least here).

CS33 Intro to Computer Systems XXIV–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

subr.s (3)

0: .comm X,4,4
0: .ident "GCC: (Debian 4.7.2-5) 4.7.2"
0: .section .note.GNU-stack,"",@progbits

reserve 4 bytes of 4-byte aligned
storage for X

CS33 Intro to Computer Systems XXIV–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

int X;

int func(int arg) {
static int Y;
int Z;

...

}

Which of X, Y, Z, and arg
would the compiler know the
addresses of at compile
time?

a) all
b) just X and Y
c) just arg and Z
d) none

Complete documentation for ELF (much more than you’d ever want to know) can be
found at http://refspecs.linuxbase.org/elf/elf.pdf.

CS33 Intro to Computer Systems XXIV–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

ELF

• Executable and linking format
– used on most Unix systems

» pretty much all but Mac OS
– defines format for:

» .o (object) files
» .so (shared object) files
» executable files

CS33 Intro to Computer Systems XXIV–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Doing Relocation

• Linker is provided instructions for updating
object files
– lots of ways addresses can appear in machine code
– three in common use on x86-64

» 32-bit absolute addresses
• used for text references

» 64-bit absolute addresses
• used for data references

» 32-bit PC-relative addresses
• offset from current value of rip
• used for text and data references

In this and the next few slides we examine the contents of the object files. This
information was obtained by using the program “readelf”.

CS33 Intro to Computer Systems XXIV–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

main.o (1)
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: REL (Relocatable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x0
Start of program headers: 0 (bytes into file)
Start of section headers: 296 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 0 (bytes)
Number of program headers: 0
Size of section headers: 64 (bytes)
Number of section headers: 13
Section header string table index: 10

The first relocation section above contains information about the text portion of the
program – executable code. The second relocation section contains information about
the data portion of the program.

CS33 Intro to Computer Systems XXIV–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

main.o (2)

Relocation section '.rela.text' at offset 0x5c0 contains 3 entries:
Offset Info Type Sym. Value Sym. Name + Addend

000000000007 000900000002 R_X86_64_PC32 0000000000000008 aX - 4

00000000000f 000a00000002 R_X86_64_PC32 0000000000000000 Y - 4
000000000014 000b00000002 R_X86_64_PC32 0000000000000000 subr - 4

Relocation section '.rela.data' at offset 0x608 contains 1 entries:
Offset Info Type Sym. Value Sym. Name + Addend

000000000008 000c00000001 R_X86_64_64 0000000000000000 X + 0

0: 48 83 ec 08 sub $0x8,%rsp

4: 48 8b 05 00 00 00 00 mov 0x0(%rip),%rax # b <main+0xb>
b: 8b 38 mov (%rax),%edi
d: 03 3d 00 00 00 00 add 0x0(%rip),%edi # 13 <main+0x13>

13: e8 00 00 00 00 callq 18 <main+0x18>
18: b8 00 00 00 00 mov $0x0,%eax

1d: 48 83 c4 08 add $0x8,%rsp
21: c3 retq

32-bit, PC-relative address

64-bit, absolute address

The first three relocation instructions are for the text associated with main. The first
relocation instruction specifies that offset 0x07 of the text region should be updated by
adding to it the PC-relative version of the address ultimately associated with symbol aX.
This will be, of course, where aX is located in the data region. The field in the “Info”
column encodes what’s given more clearly in the next three columns. The “0009”
identifies a field in the symbol table (not shown) that says the symbol’s name is aX and
that its value may be found at offset 0x08 (the “Sym. Value” column) in this module’s
contribution to the data section. The “0002” in the “Info” column says that the type of
reference to aX is 32-bit PC-relative (the “Type” column).

To handle PC-relative addressing, the linker blindly assumes that the PC’s value (the
contents of register rip) is the address of the field within the instruction that’s being
modified (offset 7 in this example). Thus, for example, if the text section for main were
loaded into memory at address 0x1000, the linker would assume that the value
contained in register rip would be 0x1007, where the source operand of the first mov
instruction is being located. If symbol aX is at, say, location 0x10008, the linker would
modify the last four bytes of themov instruction by replacing its contents with 0xf001 (=
0x10008 – 0x1001). However, by the time rip is used to access the source operand, it
will already have been incremented to point to the next instruction (the second mov). If
the PC-relative address of 0xf001 were actually used, it would point to four bytes beyond
the location of aX. So, to correct for this, rather than use the value of symbol aX
directly, the linker is instructed to use four less than this value (hence the “addend” of -
4).

CS33 Intro to Computer Systems XXIV–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

main.o (3)

Relocation section '.rela.text' at offset 0x5c0 contains 3 entries:
Offset Info Type Sym. Value Sym. Name + Addend

000000000007 000900000002 R_X86_64_PC32 0000000000000008 aX - 4

00000000000f 000a00000002 R_X86_64_PC32 0000000000000000 Y - 4
000000000014 000b00000002 R_X86_64_PC32 0000000000000000 subr - 4

Relocation section '.rela.data' at offset 0x608 contains 1 entries:
Offset Info Type Sym. Value Sym. Name + Addend

000000000008 000c00000001 R_X86_64_64 0000000000000000 X + 0

0: 48 83 ec 08 sub $0x8,%rsp

4: 48 8b 05 00 00 00 00 mov 0x0(%rip),%rax # b <main+0xb>
b: 8b 38 mov (%rax),%edi
d: 03 3d 00 00 00 00 add 0x0(%rip),%edi # 13 <main+0x13>

13: e8 00 00 00 00 callq 18 <main+0x18>
18: b8 00 00 00 00 mov $0x0,%eax

1d: 48 83 c4 08 add $0x8,%rsp
21: c3 retq

The second relocation instruction specifies that offset 0x0f of the text region should be
updated by adding to it the PC-relative version of the address ultimately associated with
symbol Y. This will be, of course, where Y is located in the data region.

CS33 Intro to Computer Systems XXIV–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

main.o (4)

Relocation section '.rela.text' at offset 0x5c0 contains 3 entries:
Offset Info Type Sym. Value Sym. Name + Addend

000000000007 000900000002 R_X86_64_PC32 0000000000000008 aX - 4

00000000000f 000a00000002 R_X86_64_PC32 0000000000000000 Y - 4
000000000014 000b00000002 R_X86_64_PC32 0000000000000000 subr - 4

Relocation section '.rela.data' at offset 0x608 contains 1 entries:
Offset Info Type Sym. Value Sym. Name + Addend

000000000008 000c00000001 R_X86_64_64 0000000000000000 X + 0

0: 48 83 ec 08 sub $0x8,%rsp

4: 48 8b 05 00 00 00 00 mov 0x0(%rip),%rax # b <main+0xb>
b: 8b 38 mov (%rax),%edi
d: 03 3d 00 00 00 00 add 0x0(%rip),%edi # 13 <main+0x13>

13: e8 00 00 00 00 callq 18 <main+0x18>
18: b8 00 00 00 00 mov $0x0,%eax

1d: 48 83 c4 08 add $0x8,%rsp
21: c3 retq

The third relocation instruction specifies that offset 0x14 of the text region should be
updated by adding to it the PC-relative version of the address ultimately associated with
symbol subr. This will be, of course, where subr is located in the text region.

CS33 Intro to Computer Systems XXIV–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

main.o (5)

Relocation section '.rela.text' at offset 0x5c0 contains 3 entries:
Offset Info Type Sym. Value Sym. Name + Addend

000000000007 000900000002 R_X86_64_PC32 0000000000000008 aX - 4

00000000000f 000a00000002 R_X86_64_PC32 0000000000000000 Y - 4
000000000014 000b00000002 R_X86_64_PC32 0000000000000000 subr - 4

Relocation section '.rela.data' at offset 0x608 contains 1 entries:
Offset Info Type Sym. Value Sym. Name + Addend

000000000008 000c00000001 R_X86_64_64 0000000000000000 X + 0

0: 48 83 ec 08 sub $0x8,%rsp

4: 48 8b 05 00 00 00 00 mov 0x0(%rip),%rax # b <main+0xb>
b: 8b 38 mov (%rax),%edi
d: 03 3d 00 00 00 00 add 0x0(%rip),%edi # 13 <main+0x13>

13: e8 00 00 00 00 callq 18 <main+0x18>
18: b8 00 00 00 00 mov $0x0,%eax

1d: 48 83 c4 08 add $0x8,%rsp
21: c3 retq

The final relocation instruction, which is for the data associated with main, specifies
that offset 0x08 of this module’s contribution to the data region should be updated by
adding to it the address of symbol X, once it’s determined.

CS33 Intro to Computer Systems XXIV–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

main.o (6)

Relocation section '.rela.text' at offset 0x5c0 contains 3 entries:
Offset Info Type Sym. Value Sym. Name + Addend

000000000007 000900000002 R_X86_64_PC32 0000000000000008 aX - 4

00000000000f 000a00000002 R_X86_64_PC32 0000000000000000 Y - 4
000000000014 000b00000002 R_X86_64_PC32 0000000000000000 subr - 4

Relocation section '.rela.data' at offset 0x608 contains 1 entries:
Offset Info Type Sym. Value Sym. Name + Addend

000000000008 000c00000001 R_X86_64_64 0000000000000000 X + 0

0: 48 83 ec 08 sub $0x8,%rsp

4: 48 8b 05 00 00 00 00 mov 0x0(%rip),%rax # b <main+0xb>
b: 8b 38 mov (%rax),%edi
d: 03 3d 00 00 00 00 add 0x0(%rip),%edi # 13 <main+0x13>

13: e8 00 00 00 00 callq 18 <main+0x18>
18: b8 00 00 00 00 mov $0x0,%eax

1d: 48 83 c4 08 add $0x8,%rsp
21: c3 retq

CS33 Intro to Computer Systems XXIV–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

subr.o (1)
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: REL (Relocatable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x0
Start of program headers: 0 (bytes into file)
Start of section headers: 312 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 0 (bytes)
Number of program headers: 0
Size of section headers: 64 (bytes)
Number of section headers: 13
Section header string table index: 10

The relocation section for subr includes entries for relocating the references to the
strings passed to the calls to printf. For both references, the symbol name is
“.rodata.str1.1”, which refers to the section containing both strings: the first is at offset
0, the second at offset 9. Hence the addend value is used to indicate which string is
being referenced.

CS33 Intro to Computer Systems XXIV–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

subr.o (2)

Relocation section '.rela.text' at offset 0x5b0 contains 5 entries:
Offset Info Type Sym. Value Sym. Name + Addend

000000000007 00050000000a R_X86_64_32 0000000000000000 .rodata.str1.1 + 0

000000000011 000a00000002 R_X86_64_PC32 0000000000000000 printf - 4
000000000017 000b00000002 R_X86_64_PC32 0000000000000004 X - 4
00000000001c 00050000000a R_X86_64_32 0000000000000000 .rodata.str1.1 + 9
000000000026 000a00000002 R_X86_64_PC32 0000000000000000 printf - 4

0: 48 83 ec 08 sub $0x8,%rsp
4: 89 fe mov %edi,%esi
6: bf 00 00 00 00 mov $0x0,%edi
b: b8 00 00 00 00 mov $0x0,%eax

10: e8 00 00 00 00 callq 15 <subr+0x15>
15: 8b 35 00 00 00 00 mov 0x0(%rip),%esi # 1b <subr+0x1b>
1b: bf 00 00 00 00 mov $0x0,%edi
20: b8 00 00 00 00 mov $0x0,%eax

25: e8 00 00 00 00 callq 2a <subr+0x2a>
2a: 48 83 c4 08 add $0x8,%rsp

2e: c3 retq

.rodata.str1.1:
XX = %d\n\0X = %d\n\0

CS33 Intro to Computer Systems XXIV–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

Consider the following 5-byte instruction:
ea 00 00 00 00
ea is the opcode for the call instruction with a
32-bit PC-relative operand.
Suppose this instruction is at location 0x1000.
To what location would control be transferred if
the instruction were executed as is?

a) 0
b) 0x1000
c) 0x1001
d) 0x1005

To simplify our discussion a bit, the version of printf shown here is not what is really
provided the C library, but is much simpler. Assume “StandardFiles” is an array of per-
file information required by printf (and other I/O routines). Printf calls write, the
system call that actually performs the write operation.

CS33 Intro to Computer Systems XXIV–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

printf.o

Relocation section '.rela.text' at offset 0x5c0 contains 3 entries:
Offset Info Type Sym. Value Sym. Name + Addend

0000000002d3 000b00000002 R_X86_64_PC32 0000000000000000 write - 4

Relocation section '.rela.data' at offset 0x608 contains 1 entries:
Offset Info Type Sym. Value Sym. Name + Addend

0000000000d3 000c00000001 R_X86_64_64 0000000000000000 StandardFiles + 0

This is the ELF header from the final executable created for our fully linked program.

CS33 Intro to Computer Systems XXIV–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

prog
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x400400
Start of program headers: 64 (bytes into file)
Start of section headers: 2704 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 8
Size of section headers: 64 (bytes)
Number of section headers: 31
Section header string table index: 28

The slide shows the final layout of the address space. (Though keep in mind that, as
already mentioned, what’s there for printf is simplified.) Note that a special entry
“_start” has been added. This is what is actually called first. It then calls main. When
main returns, it returns to _start, which then causes the process to terminate (by
calling the operating system’s “exit” function).

If you are exceptionally sharp-eyed, you might notice that .rodata refers to an area
(within text) that’s only 9 bytes long, but that the sum of the lengths of the two format
strings passed to the two calls to printf in subr was 17 bytes. The linker actually
determines that the second string is a suffix of the first, and thus it’s only necessary to
store the first (and thus the reference to the second string is a reference to the second
character of the first).

One might ask why text starts at 0x400400 (= 4,195,328 in decimal) rather than at a
much smaller value (such as 0). The answer is that there’s other “stuff” at lower
addresses, some of which we’ll discuss later. However, it’s important that nothing be at
location zero (in fact, nothing should be in the first “page” of memory, which is either the
first 4k bytes or the first 2M bytes on the x86-64, depending on how configured) — this
is so that that page can be marked “inaccessible” and thus all attempts to use a zero
(null) pointer will fail.

CS33 Intro to Computer Systems XXIV–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Final Result

Symbol Value Size
_start 0x400400 0x60

main 0x400460 0x3f

subr 0x4004a0 0x30

printf 0x4004d0 0x12000

write 0x4124d0 0x30

.rodata 0x412500 0x9

aX 0x413000 0x8

Y 0x413008 0x8

StandardFiles 0x413010 0x1000

X 0x414010 0x8

text

data

bss

