
CS33 Intro to Computer Systems XXV–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Intro to Storage Allocation



CS33 Intro to Computer Systems XXV–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

A Queue

typedef struct list_element {
int value;
struct list_element *next;

} list_element_t;

list_element_t *head, *tail;

67

17

2

14

head

tail



Note thatmalloc allocates storage to hold a new instance of list_element_t.

CS33 Intro to Computer Systems XXV–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Enqueue
int enqueue(int value) {
list_element_t *newle

= (list_element_t *)malloc(sizeof(list_element_t));
if (newle == 0)
return 0; // can't do it: out of memory

newle->value = value;
newle->next = 0;
if (head == 0) {
// list was empty
assert(tail == 0);
head = newle;

} else {
tail->next = newle;

}
tail = newle;
return 1;

}



The problem with this code, which removes the first item in the queue, is that the list
element being removed is lost – its storage is not returned to the pool of free memory.

CS33 Intro to Computer Systems XXV–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Dequeue
int dequeue(int *value) {
list_element_t *first;
if (head == 0) {
// list is empty
return 0;

}
*value = head->value;
first = head;
head = head->next;
if (tail == first) {
assert(head == 0);
tail = 0;

}
return 1;

}

What’s wrong with 
this code???



Answer: around 3 minutes on a SunLab machine.

CS33 Intro to Computer Systems XXV–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Storage Leaks

int main() {

while(1)
if (malloc(sizeof(list_element_t)) == 0)
break;

return 1;
}

For how long will this program 
run before terminating?



Here after removing the list element from the list, we return it to the pool of free memory
by calling free.

CS33 Intro to Computer Systems XXV–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Dequeue, Fixed
int dequeue(int *value) {
list_element_t *first;
if (head == 0) {
// list is empty
return 0;

}
*value = head->value;
first = head;
head = head->next;
if (tail == first)
assert(head == 0);
tail = 0;

}
free(first);
return 1;

}



CS33 Intro to Computer Systems XXV–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1
int enqueue(int value) {
list_element_t *newle

= (list_element_t *)malloc(sizeof(list_element_t));
if (newle == 0)
return 0;

newle->value = value;
newle->next = 0;
if (head == 0) {
// list was empty
assert(tail == 0);
head = newle;

} else {
tail->next = newle;

}
tail = newle;
free(newle); // saves us the bother of freeing it later
return 1;

}

This version of enqueue makes 
unnecessary the call to free in 
dequeue.

a) It works well.
b) It fails occasionally.
c) It hardly ever works.
d) It never works.



When something is malloc'd, the system must keep track of its size. Thus, when it's
freed, the system will know how much storage is being freed.

CS33 Intro to Computer Systems XXV–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

malloc and free

void *malloc(size_t size)
– allocate size bytes of storage and return a pointer 

to it
– returns 0 (NULL) if the requested storage isn’t 

available
void free(void *ptr)

– free the storage pointed to by ptr
– ptrmust have previously been returned by malloc

(or other storage-allocation functions — calloc and 
realloc)



CS33 Intro to Computer Systems XXV–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

realloc

void *realloc(void *ptr, size_t size)
– change the size of the storage pointed to by ptr
– the contents, up to the minimum of the old size and 

new size, will not be changed
– ptrmust have been returned by a previous call to 
malloc, realloc, or calloc

– it may be necessary to allocate a completely new 
area and copy from the old to the new
» thus the return value may be different from ptr
» if copying is done the old area is freed

– returns 0 if the operation cannot be done



In this example, we’re to read a line of input, where a line is delineated by a newline
character. However, we have no upper bound on its length. So, we start by allocating
four bytes of storage for the line. If that’s not enough (the four bytes read in don’t end
with a ‘\n’), we then double our allocation and read in more up to the end of the new
allocation, if that’s not enough, we double the allocation again, and so forth. When we’re
finished, we reduce the allocation, giving back to the system that portion we didn’t need.

CS33 Intro to Computer Systems XXV–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Get (contiguous) Input (1)
char *getinput() {
int alloc_size = 4;  // start small
int read_size = 4;   // max number of bytes to read
int next_read = 0;   // index in buf of next read
int bytes_read;      // number of bytes read
char *buf = (char *)malloc(alloc_size);
char *newbuf;

if (buf == 0) {
// no memory
return 0;

}



We assume that if read returns neither -1 nor 0, then either it has filled the buffer or
that the last character read in was '\n'.

CS33 Intro to Computer Systems XXV–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Get (contiguous) Input (2)
while (1) {
if ((bytes_read

= read(0, buf+next_read, read_size)) == -1) {
perror("getinput");
return 0;

}
if (bytes_read == 0) {
// eof
break;

}
if ((buf+next_read)[bytes_read-1] == '\n') {
// end of line
break;

}



If we get here, then it’s the case that the buffer wasn’t big enough. So, let’s try to get a
larger buffer. If we can’t get a larger buffer (e.g., the system is out of memory), we free up
everything and report failure (probably not a great way to handle this, but it’s convenient
for the slide).

CS33 Intro to Computer Systems XXV–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Get (contiguous) Input (3)
next_read += read_size;
read_size = alloc_size;
alloc_size *= 2;
newbuf = (char *)realloc(buf, alloc_size);
if (newbuf == 0) {
// realloc failed: not enough memory.
// Free the storage allocated previously and report
// failure.
free(buf);
return 0;

}
buf = newbuf;

}



CS33 Intro to Computer Systems XXV–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Get (contiguous) Input (4)
// reduce buffer size to the minimum necessary
newbuf = (char *)realloc(buf,

alloc_size - (read_size - bytes_read));
if (newbuf == 0) {
// couldn't allocate smaller buf
return buf;

}
return newbuf;

}



CS33 Intro to Computer Systems XXV–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Some Common Memory-
Related Errors



Supplied by CMU.

CS33 Intro to Computer Systems XXV–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Dereferencing Bad Pointers

• The classic scanf bug

int val;

...

scanf("%d", val);



Supplied by CMU.

This code multiplies an NxN matrix and a vector of length N, returning a pointer to a
(newly allocated) vector of length N.

CS33 Intro to Computer Systems XXV–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Reading Uninitialized Memory

• Assuming that dynamically allocated data is 
initialized to zero

/* return y = Ax */
int *matvec(int A[][N], int x[]) { 

int *y = (int *)malloc(N*sizeof(int));
int i, j;

for (i=0; i<N; i++)
for (j=0; j<N; j++)

y[i] += A[i][j]*x[j];
return y;

}



Supplied by CMU.

The problem here is that the storage allocated for p is of size N*sizeof(int), when it
should be N*sizeof(int *) — on a 64-bit machine, p won’t have been assigned enough
storage.

CS33 Intro to Computer Systems XXV–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Overwriting Memory

• Allocating the (possibly) wrong-sized object

// set up p so it is an array of
// int *’s, allocated dynamically
int **p;

p = (int **)malloc(N*sizeof(int));

for (i=0; i<N; i++) {
p[i] = (int *)malloc(M*sizeof(int));

}

p[0]
p[1]
p[2]
p[3]
p[4]
p[5]
p[6]
p[7]



Supplied by CMU.

CS33 Intro to Computer Systems XXV–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Overwriting Memory

• Not checking the max string size

• Basis for classic buffer overflow attacks

char s[8];
int i;

gets(s);  /* reads “123456789” from stdin */ 



Supplied by CMU.

CS33 Intro to Computer Systems XXV–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Going Too Far

• Misunderstanding pointer arithmetic

int *search(int p[], int val) {

while (*p && *p != val)
p += sizeof(int);

return p;
}



Supplied by CMU.

CS33 Intro to Computer Systems XXV–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Referencing Nonexistent Variables

• Forgetting that local variables disappear 
when a function returns

int *foo () {
int val;

return &val;
}



Supplied by CMU.

CS33 Intro to Computer Systems XXV–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Freeing Blocks Multiple Times

x = (int *)malloc(N*sizeof(int));
<manipulate x>

free(x);

y = (int *)malloc(M*sizeof(int));
<manipulate y>

free(x);



Supplied by CMU.

CS33 Intro to Computer Systems XXV–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Referencing Freed Blocks

x = (int *)malloc(N*sizeof(int));
<manipulate x>

free(x);
...

y = (int *)malloc(M*sizeof(int));
for (i=0; i<M; i++)

y[i] = x[i]++;



Supplied by CMU.

CS33 Intro to Computer Systems XXV–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Failing to Free Blocks (Memory 
Leaks)

foo() {
int *x = (int *)malloc(N*sizeof(int));
Use(x, N);
return;

}



Supplied by CMU.

CS33 Intro to Computer Systems XXV–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Failing to Free Blocks (Memory Leaks)

• Freeing only part of a data structure
struct list {

int val;
struct list *next;

};

foo() {
struct list *head = malloc(sizeof(struct list));
head->val = 0;
head->next = NULL;
<allocate and manipulate the rest of the list>
...
free(head);
return;

}



There are two problems here: space is allocated for str to point to, but the space is not
freed when str no longer points to it. str now points to the string “”, a string consisting
of just the null byte that’s in read-only storage. The strcat attempts to copy a string into
the storage, but not only is the string to be copied too long, but there will be a segfault
when the attempt is made to copy it into the read-only storage.

CS33 Intro to Computer Systems XXV–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Total Confusion

foo() {
char *str;
str = (char *)malloc(1024);
...
str = "";
...
strcat(str, "c");
...
return;

}



CS33 Intro to Computer Systems XXV–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

It Works, But ...

• Using a hammer where a feather would do ...

hammer() {
int *x = (int *)malloc(1024*sizeof(int));
Use(x, 1024);
free(x);
return;

}

feather() {
int x[1024];
Use(x, 1024);
return;

}



CS33 Intro to Computer Systems XXV–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

• Will this work?
a) always
b) usually
c) never

typedef struct
TwoParts {

int part1[120];
float part2[200];

} TwoParts_t;

void func() {
TwoParts_t *X;
X = malloc(sizeof(TwoParts_t));
UseX1(X->part1);
free(&X->part1);
UseX2(X->part2);
free(&X->part2);

} 



The program break is the upper limit of the currently allocated dynamic region.

CS33 Intro to Computer Systems XXV–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

The Unix Address Space

text

data

bss
dynamic

stack

program 
break



The increment is signed, and thus may be positive or negative (if it’s zero, the current
breakpoint is returned and nothing else happens). If the increment is positive, we’re
increasing the size of the dynamic area. If it’s negative, we’re decreasing its size.

CS33 Intro to Computer Systems XXV–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

sbrk System Call

void *sbrk(intptr_t increment)
– moves the program break by an amount equal to 
increment

– returns the previous program break
– intptr_t is typedef’d to be a long



CS33 Intro to Computer Systems XXV–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Managing Dynamic Storage

• Strategy
– get a “chunk” of memory from the OS using sbrk

» create pool of available storage, aka the “heap”
– malloc, calloc, realloc, and free use this storage if 

possible
» they manage the heap

– if not possible, get more storage from OS
» heap is made larger (by calling sbrk)

• Important note:
– when process terminates, all storage is given back 

to the system
» all memory-related sins are forgotten!



The arrow points to the current program break, indicating the end of the dynamic
region. We want to use malloc and free to manage the memory in the current dynamic
region.

CS33 Intro to Computer Systems XXV–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Malloc and Free

x = malloc(40);
y = malloc(60);
z = malloc(30);
free(y);



Somehow we need to keep track of where the free space is, so we can use it to handle
allocation requests. The green areas of memory are allocated, the white areas are
unallocated.

CS33 Intro to Computer Systems XXV–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Malloc and Free

x = malloc(40);
y = malloc(60);
z = malloc(30);
free(y);

w = malloc(60);

?

?
• How do we keep track of 

where free space is?
• How do we choose which 

to use?



CS33 Intro to Computer Systems XXV–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Managing Free Space

• Two possibilities
1) donʼt worry about it: memory is cheap and 

plentiful ⏤ simply call sbrk when a new block is 
needed

2) link together the free blocks



Let's assume we link together all the free blocks, as in the slide. If we'd like to allocate a
block of a particular size, we need to find a free block of at least that size. What search
strategy do we use to find it? An easy approach is to search, starting at the beginning of
the list, until we find a block that's big enough, and use it (this is known as first fit). An
alternative strategy, that perhaps might make better use of the available space, is to
search through the entire list of free blocks and choose a block that's the smallest of
those that are big enough (this is known as best fit).

CS33 Intro to Computer Systems XXV–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Finding the Right Free Block

Free (28 bytes)

Allocated

Free (40 bytes)

Allocated

Free (32 bytes)

Allocated

malloc(24)

• Search strategies
• first fit
• best fit



CS33 Intro to Computer Systems XXV–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

A Problem

• A malloc request is for a block of 32 bytes
• The block found on the free list is 1024 bytes 

long
• Should malloc return a pointer to the entire 

1024-byte block?



It makes no sense for malloc to return a block that's much larger than needed. Instead,
it should split the block into two pieces: one piece is returned to the caller and is at least
as large as was requested. The other piece is put back on the free list with an adjusted
size.

CS33 Intro to Computer Systems XXV–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Splitting

Free (1024 bytes) Free (992 bytes)

Allocated



Here we've freed a block and end up with three free blocks in a row. The problem is that
if we now attempt to allocate a block, say of size 52, we won't find a free block that's big
enough, even though we clearly have enough space.

CS33 Intro to Computer Systems XXV–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Another Problem

Free (28 bytes)

Allocated

Free (40 bytes)

Allocated

Free (32 bytes)

Allocated

x

ç√

Free (28 bytes)

Free (16 bytes)

Free (40 bytes)

Allocated

Free (32 bytes)

Allocated

free(x)



The solution is known as coalescing: when freeing a block, we look at adjacent blocks. if
either or both adjacent blocks are free, we merge the newly freed block with its non-
allocated neighbors to form a single free block whose size is the sum of the sizes of the
blocks being coalesced.

CS33 Intro to Computer Systems XXV–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Coalescing

ç√

Free (28 bytes)

Free (16 bytes)

Free (40 bytes)

Allocated

Free (32 bytes)

Allocated

coalesce

Allocated

Allocated

Free (32 bytes)

Free (84 bytes)



CS33 Intro to Computer Systems XXV–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 3
1200

1300

We have two free blocks of memory, of 
sizes 1300 and 1200 (appearing in that 
order). There are three successive 
requests to malloc for allocations of 1000, 
1100, and 250 bytes. Which approach does 
best? (Hint: one of the two fails the last 
request.)

a) first fit
b) best fit



Consider the situation in which we have one large pool of memory from which we will
allocate (and to which we will liberate) variable-sized pieces of memory. Assume that we
are currently in the situation shown at the top of the picture: two unallocated areas of
memory are left in the pool — one of size 1300 bytes, the other of size 1200 bytes. We
wish to process a series of allocation requests, and will try out two different algorithms.
The first is known as first fit — an allocation request is taken from the first area of
memory that is large enough to satisfy the request. The second is known as best fit —
the request is taken from the smallest area of memory that is large enough to satisfy the
request. On the principle that whatever requires the most work must work the best, one
might think that best fit would be the algorithm of choice.

The picture illustrates a case in which first fit behaves better than best fit. We first
allocate 1000 bytes. Under the first-fit approach (shown on the left side), this allocation
is taken from the topmost region of free memory, leaving behind a region of 300 bytes of
still unallocated memory. With the best-fit approach (shown on the right side), this
allocation is taken from the bottommost region of free memory, leaving behind a region
of 200 bytes of still-unallocated memory. The next allocation is for 1100 bytes. Under
first fit, we now have two regions of 300 bytes and 100 bytes. Under best fit, we have
two regions of 200 bytes. Finally, there is an allocation of 250 bytes. Under first fit this
leaves behind two regions of 50 bytes and 100 bytes, but the allocation cannot be
handled under best fit — neither remaining region is large enough.

This example comes from the classic book, The Art of Computer Programming, Vol. 1,
Fundamental Algorithms, by Donald Knuth.

CS33 Intro to Computer Systems XXV–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Allocation

1200

300

200
1300

Stuck!

300

100

50

100

200

200

1000 bytes

1100 bytes

250 bytes

First Fit Best Fit

1200

1300



Neither first fit nor best fit is ideal. In practice, both work reasonably well in most
situations. First fit has the advantage in that it doesn't always require looking at the
sizes of all free blocks of memory.

CS33 Intro to Computer Systems XXV–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Some Observations

• Best fit
– perhaps leaves behind chunks that are too small to 

be of use
– requires linear time (in size of free list) for malloc

• First fit
– small chunks congregate at beginning of free list
– upper bound of linear time for malloc, but often 

much less



When we analyze the behavior of our storage-allocation approaches, we're concerned
about fragmentation – how much storage is wasted.

CS33 Intro to Computer Systems XXV–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Fragmentation

• Fragmentation refers to the wastage of 
memory due to our allocation policy

• Two sorts
– external fragmentation
– internal fragmentation



External fragmentation is when our allocation policy produces free blocks that are too
small to be of use.

CS33 Intro to Computer Systems XXV–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

External Fragmentation

Free (60 bytes)

Allocated
Free (8 bytes)

Allocated
Free (8 bytes)

Allocated

Free (8 bytes)

Wasted 
space



While this isn't important for this course, internal fragmentation occurs when memory is
allocated in fixed-size blocks, say 4k bytes each. If we allocate space for a data structure
whose size is not a multiple of the block size, the wasted space is said to be due to
internal fragmentation.

CS33 Intro to Computer Systems XXV–44 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Internal Fragmentation

Block 1

Block 2

Block 3

allocated 
space

wasted 
space



LIFO (last in first out) insertion simply means that items are always inserted at the
beginning of the free list. With ordered insertion, we keep the free list ordered by the size
of the block (from smallest to largest). Note that LIFO insertion tends to put larger blocks
at the beginning of the free list, which is good for first-fit allocation.

Note that for the malloc project (coming out soon), we will do first fit with LIFO insertion.

CS33 Intro to Computer Systems XXV–45 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Variations

• Next fit
– like first fit, but the next search starts where the 

previous ended
• Worst fit

– always allocate from largest free block
» perhaps reduces the number of “too small” blocks

• Free-list insertion
– LIFO

» easy to do
» O(1)

– ordered insertion
» O(n)



By “modest memory demands”, we mean thatmalloc, free, and related functions are not
called frequently.

CS33 Intro to Computer Systems XXV–46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 4

Assume that best-fit results in less external 
fragmentation than first-fit.
We are running an application with modest 
memory demands. Which allocation strategy is 
likely to result in better performance (in terms 
of time) for the application:

a) first-fit with LIFO insertion
b) first-fit with ordered insertion
c) best-fit


