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CS 33
Virtual Memory



The concept of the address space is fundamental in most of today’s operating systems.
Threads of control executing in different address spaces are protected from one another,
since none of them can reference the memory of any of the others. In most systems
(such as Unix), the operating system resides in address space that is shared with all
processes, but protection is employed so that user threads cannot access the operating
system. What is crucial in the implementation of the address-space concept is the
efficient management of the underlying primary and secondary storage.
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The Address-Space Concept

• Protect processes from one another
• Protect the OS from user processes
• Provide efficient management of available 

storage



Early approaches to managing the address space were concerned primarily with
protecting the operating system from the user. One technique was the hardware-
supported concept of the memory fence: an address was established below which no
user mode access was allowed. The operating system was placed below this point in
memory and was thus protected from the user.
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The memory-fence approach protected the operating system, but did not protect user
processes from one another. (This wasn’t an issue for many systems—there was only
one user process at a time.) Another technique, still employed in some of today’s
systems, is the use of base and bounds registers to restrict a process’s memory
references to a certain range. Each address generated by a user process was first
compared with the value in the bounds register to make certain that it did not reference
a location beyond the process’s range of memory, and then was modified by adding to it
the value in the base register, ensuring that it did not reference a location before the
process’s range of memory.
A further advantage of this technique was to ensure that a process would be loaded into
what appeared to be location 0 — thus no relocation was required at load time.
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Swapping is a technique, still in use today, in which the images of entire processes are
transferred back and forth between primary and secondary storage. An early use of it
was for (slow) time-sharing systems: when a user paused to think, his or her process
was swapped out and that of another user was swapped in. This allowed multiple users
to share a system that employed only the memory fence for protection.

Base and bounds registers made it feasible to have a number of processes in primary
memory at once. However, if one of these processes was inactive, swapping allowed the
system to swap this process out and swap another process in. Note that the use of the
base register is very important here: without base registers, after a process is swapped
out, it would have to be swapped into the same location in which it resided previously.
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The concept of overlays is similar to the concept of swapping, except that it applies to
pieces of images rather than whole images and the user is in charge. Say we have 100
kilobytes of available memory and a 200-kilobyte program. Clearly, not all the program
can be in memory at once. The user might decide that one portion of the program should
always be resident, while other portions of the program need be resident only for brief
periods. The program might start with routines A and B loaded into memory. A calls B;
B returns. Now A wants to call C, so it first reads C into the memory previously occupied
by B (it overlays B), and then calls C. C might then want to call D and E, though there is
only room for one at a time. So, C first calls D, D returns, then C overlays D with E and
then calls E.

The advantage of this technique is that the programmer has complete control of the use
of memory and can make the necessary optimization decisions. The disadvantage is that
the programmer must make the necessary decisions to make full use of memory (the
operating system doesn’t help out). Few programmers can make such decisions wisely,
and fewer still want to try.
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One way to look at virtual memory is as an automatic overlay technique: processes “see”
an address space that is larger than the amount of real memory available to them; the
operating system is responsible for the overlaying.

Put more abstractly (and accurately), virtual memory is the support of an address space
that is independent of the size of primary storage. Some sort of mapping technique must
be employed to map virtual addresses to primary and secondary stores. In the typical
scenario, the computer hardware maps some virtual addresses to primary storage. If a
reference is made to an unmapped address, then a fault occurs (a page fault) and the
operating system is called upon to deal with it. The operating system might then find the
desired virtual locations on secondary storage (such as a disk) and transfer them to
primary storage. Or the operating system might decide that the reference is illegal and
deliver a seg fault to the process.

As with base and bounds registers, the virtual memory concept allows us to handle
multiple processes simultaneously, with the processes protected from one another.
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Virtual memory (what the program sees) is divided into fixed-size pages (on the x86
these are usually 4 kilobytes in size). Real memory (DRAM) is also divided into fixed-size
pieces, called page frames (though they’re often referred to simply as pages). A memory
map, implemented in hardware and often called a page table, translates references to
virtual-memory pages into references to real-memory page frames. In general, virtual
memory is larger than real memory, thus not all pages can be mapped to page frames.
Those that are not are said to have invalid translations.
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A page table is an array of page table entries. Suppose we have, as is the usual case for
the x86, a 32-bit virtual address and a page size of 4096 bytes. The 32-bit address
might be split into two parts: a 20-bit page number and a 12-bit offset within the page.
When a thread generates an address, the hardware uses the page-number portion as an
index into the page-table array to select a page-table entry, as shown in the picture. If
the page is in primary storage (i.e. the translation is valid), then the validity bit in the
page-table entry is set, and the page-frame-number portion of the page-table entry is the
high-order bits of the location in primary memory where the page resides. (Primary
memory is thought of as being subdivided into pieces called page frames, each exactly
big enough to hold a page; the address of each of these page frames is at a “page
boundary,” so that its low-order bits are zeros.) The hardware then appends the offset
from the original virtual address to the page-frame number to form the final, real
address.

If the validity bit of the selected page-table entry is zero, then a page fault occurs and
the operating system takes over. Other bits in a typical page-table entry include a
reference bit, which is set by the hardware whenever the page is referenced, and a
modified bit, which is set whenever the page is modified. We will see how these bits are
used later in this lecture. The page-protection bits indicate who is allowed access to
the page and what sort of access is allowed. For example, the page can be restricted for
use only by the operating system, or a page containing executable code can be write-
protected, meaning that read accesses are allowed but not write accesses.
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Quiz 1

How many 212-byte pages fit in a 32-bit address 
space?

a) a little over a 1000
b) a little over a million
c) a little over a billion
d) none of the above
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VM is Your Friend ...

• Not everything has to be in memory at once
– pages brought in (and pushed out) when needed
– unallocated parts of the address space consume no 

memory
» e.g., hole between stack and dynamic areas

• What’s mine is not yours (and vice versa)
– address spaces are disjoint

• Sharing is ok though ...
– address spaces don’t have to be disjoint

» a single page frame may be mapped into multiple processes
• I don’t trust you (or me)

– access to individual pages can be restricted
» read, write, execute, or any combination



In the not-all-that-distant past, 4 megabytes of memory would have cost many tens of
thousands of dollars.
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Page-Table Size
• Consider a full 232-byte address space

– assume 4096-byte (212-byte) pages
– 4 bytes per page-table entry
– the page table would consist of 232/212 (= 220) entries
– its size would be 222 bytes (or 4 megabytes)

» at $100/gigabyte
• around $0.40

• For a 264-byte address space
– assume 4096-byte (212-byte) pages
– 8 bytes per page-table entry
– the page table would consist of 264/212 (= 252) entries
– its size would be 255 bytes (or 32 petabytes)

» at $1/gigabyte
• over $33 million



The IA32 architecture employs a two-level page table providing a means for reducing the
memory requirements of the address map. The high-order 10 bits of the 32-bit virtual
address are an index into what’s called the page directory table. Each of its entries refer
to a page table, whose entries are indexed by the next 10 bits of the virtual address. Its
entries refer to individual pages; the offset within the page is indexed by the low-order
12 bits of the virtual address. The current page directory is pointed to by a special
register known as CR3 (control register 3), whose contents may be modified only in
privileged mode. The page directory must reside in real memory when the address space
is in use, but it is relatively small (1024 4-byte entries: it’s exactly one page in length).
Though there are potentially a large number of page tables, only those needed to satisfy
current references must be in memory at once.
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Quiz 2

Can a page start at a virtual address that’s not 
divisible by the page size?

a) yes
b) no



For Linux on the IA32, the OS kernel occupies the top quarter of the address space and
is mapped into every process (though it may not be accessed in user mode). Each user
process is mapped into the bottom three quarters of the address space — only one is
mapped at a time for each processor.

Each process has its own page-directory table describing its address space. The top
quarter (256) entries are the same as for all other processes and describe the OS kernel’s
mappings. The bottom three quarters (768) are, in general, private to the process and
describe its mappings.

CS33 Intro to Computer Systems XXVII–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Linux Intel IA32 VM Layout

user

kernel

0

3GB

4GB

Page directory
table



For the x86-64, four levels of translation are done (the high-order 16 bits of the address
are not currently used: the hardware requires that these 16 bits must all be equal to bit
47), thus it really supports “only” a 48-bit address space. Note that only the “page map
table” must reside in real memory at all times. The other tables must be resident only
when necessary.

CS33 Intro to Computer Systems XXVII–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

x86-64 Virtual Address Format 1
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0112029384763

Page map 
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4KB page



Alternatively, there may be only three levels of page tables, ending with the page-
directory table an 2MB pages. Both 2MB and 4KB pages may coexist in the same
address space; which is being used is indicated in the associated page-directory-table
entry.
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The hardware also supports 1 GB pages by eliminating the page-directory table. Not
many operating systems (if any) yet take advantage of this.
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Why Multiple Page Sizes?

• Fragmentation
– for region composed of 4KB pages, average 

internal fragmentation is 2KB
– for region composed of 1GB pages, average 

internal fragmentation is 512MB
• Page-table overhead

– larger page sizes have fewer page tables
» less overhead in representing mappings



Recall that, in current implementations of the x86-64 architecture, only 48 bits of virtual
address are used. Furthermore, the high-order 16 bits must be equal to bit 47. Thus the
legal addresses are those at the top and at the bottom of the address space. The top
addresses are used for the OS kernel, and thus mapped into all processes. The bottom
address are used for each user process. The addresses in the middle (most of the
address space — the slide is not drawn to scale!) are illegal and generate faults if used.

The reason for doing things this way (i.e., for the restrictions on the high-order bits) is to
force the kernel to be at the top of the address space, allowing growth of the user portion
as more virtual-address bits are supported.
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x86-64 Address Space

OS kernel

0xffffffffffffffff

0xffff800000000000

User

0x00007fffffffffff

0x0000000000000000

Illegal

0xffff7fffffffffff

0x0000800000000000

247 bytes

247 bytes

264 – 248 bytes



DRAM stands for dynamic random access memory. It's much slower (roughly by a factor
of 1000) than is access to registers and caches in the processor.
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Performance

• Page table resides in real memory (DRAM)
• A 32-bit virtual-to-real translation requires two 

accesses to page tables, plus the access to 
the ultimate real address
– three real accesses for each virtual access
– 3X slowdown!

• A 64-bit virtual-to-real translation requires 
four accesses to page tables, plus the access 
to the ultimate real address
– 5X slowdown!



To speed-up virtual-to-real translation, a special cache is maintained of recent
translations — it’s called the translation lookaside buffer (TLB). It resides in the chip,
one per core and hyperthread. The TLB shown in the slide is a two-way set associative
cache, which is a concept we may get to later in the course if we have time. This one
assumes a 32-bit virtual address with a 4k page. Things are more complicated when
multiple page sizes are supported. For example, is there just one entry for a large page
that covers its entire range of addresses, or is a large page dealt with by putting into the
cache multiple entries covering the large page, but each for the size of a small page?
Both approaches are not only possible, but done.

Note that accessing the TLB takes far less time than accessing DRAM, so much less that
the time required is negligible compared to that required to access DRAM.
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Quiz 3

Recall that there is a 5x slowdown on memory 
references via virtual memory on the x86-64. If 
all references are translated via the TLB, the 
slowdown will be

a) .5x (i.e. it will be faster, not slower)
b) 1x
c) 2x
d) 3x
e) 4x
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OS Role in Virtual Memory

• Memory is like a cache
– quick access if what’s wanted is mapped via page 

table
– slow if not — OS assistance required

• OS
– make sure what’s needed is mapped in
– make sure what’s no longer needed is not mapped 

in
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Mechanism

• Program references memory
– if reference is mapped, access is quick

» even quicker if translation in TLB and referent in on-
chip cache

– if not, page-translation fault occurs and OS is 
invoked
» determines desired page
» maps it in, if legal reference



The (kernel) thread that maintains the free page-frame list is typically called the pageout
daemon. Its job is to make certain that the free page-frame list has enough page frames
on it. If the size of the list drops below some threshold, then the pageout daemon
examines those page frames that are being used and selects a number of them to be
freed. Before freeing a page, it must make certain that a copy of the current contents of
the page exists on secondary storage. So, if the page has been modified since it was
brought into primary storage (easily determined by the hardware-supported modified
bit), it must first be written out to secondary storage. In many systems, the pageout
daemon groups such pageouts into batches, so that a number of pages can be written
out in a single operation, thus saving disk time. Unmodified, selected pages are
transferred directly to the free page-frame list, modified pages are put there after they
have been written out.

In most systems, pages in the free list get a “second chance” — if a thread in a process
references such a page, there is a page fault (the page frame has been freed and could
be used to hold another page), but the page-fault handler checks to see if the desired
page is still in primary storage, but in the free list. If it is in the free list, it is removed
and given back to the faulting process. We still suffer the overhead of a trap, but there is
no wait for I/O.
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The OS can keep track of the history of page frame by use of two bits in each page-table
entry: the modify bit, which is set by hardware whenever the associated page frame is
modified, and the referenced bit, which is set by hardware whenever the associated page
is accessed (via either a load or a store).
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Managing Page Frames
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A common approach for determining which page frames are not in use is known as the
clock algorithm. All active page frames are conceptually arranged in a circularly linked
list. The page-out thread slowly traverses the list. The “one-handed” version of the clock
algorithm, each time it encounters a page, checks the reference bit in the corresponding
translation entry: if the bit is set, it clears it. If the bit is clear, it adds the page to the
free list (writing it back to secondary storage first, if necessary).

A problem with the one-handed version is that, in systems with large amounts of
primary storage, it might take too long for the page-out thread to work its way all around
the list of page frames before it can recognize that a page has not been recently
referenced. In the two-handed version of the clock algorithm, the page-out thread
implements a second hand some distance behind the first. The front hand simply clears
reference bits. The second (back) hand removes those pages whose reference bits have
not been set to one by the time the hand reaches the page frame.
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Clock Algorithm

Front hand:
reference bit = 0

Back hand:
if (reference bit == 0)

remove page
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Why is virtual memory used?
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File I/O in Unix, and in most operating systems, is not done directly to the disk drive,
but through intermediary buffers, known as the buffer cache, in the operating system’s
address space. This cache has two primary functions. The first, and most important, is
to make possible concurrent I/O and computation within a Unix process. The second is
to insulate the user from physical disk-block boundaries.

From a user process’s point of view, I/O is synchronous. By this we mean that when
the I/O system call returns, the system no longer needs the user-supplied buffer. For
example, after a write system call, the data in the user buffer has either been
transmitted to the device or copied to a kernel buffer — the user can now scribble over
the buffer without affecting the data transfer. Because of this synchronization, from a
user process’s point of view, no more than one I/O operation can be in progress at a
time.
The buffer cache provides a kernel implementation of multibuffered I/O, and thus
concurrent I/O and computation are made possible.
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The use of read-aheads and write-behinds makes possible concurrent I/O and
computation: if the block currently being fetched is block i and the previous block
fetched was block i-1, then block i+1 is also fetched. Modified blocks are normally
written out not synchronously but instead sometime after they were modified,
asynchronously.
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Mapped File I/O
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Multi-Process Mapped File I/O
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Traditional I/O involves explicit calls to read and write, which in turn means that data
is accessed via a buffer; in fact, two buffers are usually employed: data is transferred
between a user buffer and a kernel buffer, and between the kernel buffer and the I/O
device.

An alternative approach is to map a file into a process’s address space: the file
provides the data for a portion of the address space and the kernel’s virtual-memory
system is responsible for the I/O. A major benefit of this approach is that data is
transferred directly from the device to where the user needs it; there is no need for an
extra system buffer.
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Mapped Files

• Traditional File I/O
char buf[BigEnough];
fd = open(file, O_RDWR);
for (i=0; i<n_recs; i++) {

read(fd, buf, sizeof(buf));
use(buf);

}

• Mapped File I/O
record_t *MappedFile;

fd = open(file, O_RDWR);
MappedFile = mmap(... , fd, ...);

for (i=0; i<n_recs; i++)

use(MappedFile[i]);



Mmap maps the file given by fd, starting at position off, for len bytes, into the caller’s address
space starting at location addr

• len is rounded up to a multiple of the page size
• off must be page-aligned
• if addr is zero, the kernel assigns an address
• if addr is positive, it is a suggestion to the kernel as to where the mapped file should be
located (it usually will be aligned to a page). However, if flags includes MAP_FIXED, then
addr is not modified by the kernel (and if its value is not reasonable, the call fails)

• the call returns the address of the beginning of the mapped file

The flags argument must include either MAP_SHARED or MAP_PRIVATE (but not both). If it’s
MAP_SHARED, then the mapped portion of the caller’s address space contains the current
contents of the file; when the mapped portion of the address space is modified by the process, the
corresponding portion of the file is modified.

However, if flags includes MAP_PRIVATE, then the idea is that the mapped portion of the address
space is initialized with the contents of the file, but that changes made to the mapped portion of
the address space by the process are private and not written back to the file. The details are a bit
complicated: as long as the mapping process does not modify any of the mapped portion of the
address space, the pages contained in it contain the current contents of the corresponding pages
of the file. However, if the process modifies a page, then that particular page no longer contains the
current contents of the corresponding file page, but contains whatever modifications are made to it
by the process. These changes are not written back to the file and not shared with any other
process that has mapped the file. It’s unspecified what the situation is for other pages in the
mapped region after one of them is modified. Depending on the implementation, they might
continue to contain the current contents of the corresponding pages of the file until they,
themselves, are modified. Or they might also be treated as if they’d just been written to and thus
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Mmap System Call

void *mmap(
void *addr,
// where to map file (0 if don’t care)

size_t len,
// how much to map

int prot,
// memory protection (read, write, exec.)

int flags,
// shared vs. private, plus more

int fd,
// which file

off_t off
// starting from where

);



no longer be shared with others.



Themmap system call maps a file into a process’s address space. All processes mapping
the same file can share the pages of the file.
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Here, Data is a variable located in the highlighted file page.

There are a couple options for how modifications to mmapped files are dealt with. The
most straightforward is the share option in which changes to mmapped file pages modify
the file and hence the changes are seen by the other processes who have share-mapped
the file.

Hence, the change to Data is seen by both processes mapping the file.
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The other option is to private-map the file: changes made to mmapped file pages do not
modify the file. Instead, when a page of a file is first modified via a private mapping, a
copy of just that page is made for the modifying process, but this copy is not seen by
other processes, nor does it appear in the file.

In the slide, the process on the left has private-mapped the file. Thus, its changes to
Data (in the private-mapped portion of the address space) are made to a copy of the page
containing Data. Thus, the other process will continue to see the original Data.
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Here we map the contents of a file containing a dataObject_t into the caller’s address
space, allowing it both read and write access. Note mapping the file into memory does
not cause any immediate I/O to take place. The operating system will perform the I/O
when necessary, according to its own rules.
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Example
int main( ) {
int fd;
dataObject_t *dataObjectp;

fd = open("file", O_RDWR);
if ((int)(dataObjectp = (dataObject_t *)mmap(0,

sizeof(dataObject_t),
PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0)) == -1) {

perror("mmap");
exit(1);

}

// dataObjectp points to region of (virtual) memory
// containing the contents of the file

...

}



When a process calls fork and creates a child, the child’s address space is normally a
copy of the parent’s. Thus changes made by the child to its address space will not be
seen in the parent’s address space (as shown in the left-hand column). However, if there
is a region in the parent’s address space that has been mmapped using the
MAP_SHARED flag, and subsequently the parent calls fork and creates a child, the
mmapped region is not copied but is shared by parent and child. Thus changes to the
region made by the child will be seen by the parent (and vice versa).
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fork and mmap
int main() {
int x=1;

if (fork() == 0) {
// in child
x = 2;
exit(0);

} 
// in parent
while (x==1) {
// will loop forever

}
return 0;

}

int main() {
int fd = open( ... );
int *xp = (int *)mmap(...,

MAP_SHARED, fd, ...);
xp[0] = 1;
if (fork() == 0) {
// in child
xp[0] = 2;
exit(0);

} 
// in parent
while (xp[0]==1) {
// will terminate

}
return 0;

}


