
CS33 Intro to Computer Systems XXVIII–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Virtual Memory (2)

CS33 Intro to Computer Systems XXVIII–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Mapped Files

• Traditional File I/O
char buf[BigEnough];

fd = open(file, O_RDWR);
for (i=0; i<n_recs; i++) {

read(fd, buf, sizeof(buf));
use(buf);

}

• Mapped File I/O
record_t *MappedFile;

fd = open(file, O_RDWR);

MappedFile = mmap(... , fd, ...);

for (i=0; i<n_recs; i++)

use(MappedFile[i]);

CS33 Intro to Computer Systems XXVIII–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Mmap System Call

void *mmap(
void *addr,
// where to map file (0 if don’t care)

size_t len,
// how much to map

int prot,
// memory protection (read, write, exec.)

int flags,
// shared vs. private, plus more

int fd,
// which file

off_t off
// starting from where

);

CS33 Intro to Computer Systems XXVIII–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

The mmap System Call

L1 Page
Table

L2 Page
Tables L1 Page

Table

L2 Page
Tables

File Pages

CS33 Intro to Computer Systems XXVIII–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Share-Mapped Files

L1 Page
Table

L2 Page
Tables L1 Page

Table

L2 Page
Tables

File Pages

Data = 17;

CS33 Intro to Computer Systems XXVIII–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Private-Mapped Files

L1 Page
Table

L2 Page
Tables L1 Page

Table

L2 Page
Tables

File Pages

Data = 17;

CS33 Intro to Computer Systems XXVIII–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Example
int main() {

int fd;
dataObject_t *dataObjectp;

fd = open("file", O_RDWR);
if ((int)(dataObjectp = (dataObject_t *)mmap(0,

sizeof(dataObject_t),
PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0)) == -1) {

perror("mmap");
exit(1);

}

// dataObjectp points to region of (virtual) memory
// containing the contents of the file

...

}

CS33 Intro to Computer Systems XXVIII–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

fork and mmap
int main() {
int x=1;

if (fork() == 0) {
// in child

x = 2;
exit(0);

}
// in parent
while (x==1) {

// will loop forever
}
return 0;

}

int main() {
int fd = open(...);

int *xp = (int *)mmap(...,
MAP_SHARED, fd, ...);

xp[0] = 1;

if (fork() == 0) {
// in child

xp[0] = 2;
exit(0);

}

// in parent
while (xp[0]==1) {
// will terminate

}
return 0;

}

CS33 Intro to Computer Systems XXVIII–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Network Programming (1)

CS33 Intro to Computer Systems XXVIII–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Communicating Over the Internet

Internet

CS33 Intro to Computer Systems XXVIII–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

The Internet

CS33 Intro to Computer Systems XXVIII–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Names and Addresses

• cslab1c.cs.brown.edu
– the name of a computer on the internet
– mapped to an internet address

• nytimes.com
– the name of a website
– mapped to a number of internet addresses

• How are names mapped to addresses?
– domain name service (DNS): a distributed database

• How are the machines corresponding to
internet addresses found?
– with the aid of various routing protocols

CS33 Intro to Computer Systems XXVIII–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Internet Addresses

• IP (internet protocol) address
– one per network interface
– 32 bits (IPv4)

» 5527 per acre of RI
» 25 per acre of Texas

– 128 bits (IPv6)
» 1.6 billion per cubic mile of a sphere whose radius is

the mean distance from the Sun to the (former) planet
Pluto

• Port number
– one per service instance per machine
– 16 bits

» port numbers less than 1024 are reserved for
privileged applications

CS33 Intro to Computer Systems XXVIII–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Notation

• Addresses (assume IPv4: 32-bit addresses)
– written using dot notation

» 128.48.37.1
• dots separate bytes

– address plus port (1426):
» 128.48.37.1:1426

CS33 Intro to Computer Systems XXVIII–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Reliability

• Two possibilities
– don’t worry about it

» just send it
• if it arrives at its destination, that’s good!

– no verification
– worry about it

» keep track of what’s been successfully
communicated
• receiver “acks”

» retransmit until
• data is received
or
• it appears that “the network is down”

CS33 Intro to Computer Systems XXVIII–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Reliability vs. Unreliability

• Reliable communication
– good for

» email
» texting
» distributed file systems
» web pages

– bad for
» streaming audio
» streaming video

a little noise is better than a long pause

CS33 Intro to Computer Systems XXVIII–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

The Data Abstraction

• Byte stream
– sequence of bytes

» as in pipes
– any notion of a larger data aggregate is the

responsibility of the programmer
• Discrete records

– sequence of variable-size “records”
– boundaries between records maintained
– receiver receives discrete records, as sent by

sender

CS33 Intro to Computer Systems XXVIII–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

What’s Supported

• Stream
– byte-stream data abstraction
– reliable transmission

• Datagram
– discrete-record data abstraction
– unreliable transmission

CS33 Intro to Computer Systems XXVIII–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

The following code is used to transmit data
over a reliable byte-stream communication
channel. Assume sizeof(data) is large.

// sender
record_t data=getData();
write(fd, &data,
sizeof(data));

// receiver
read(fd, &data,
sizeof(data));

useData(data);

Does it work?
a) always
b) always, assuming no network problems
c) sometimes
d) never

CS33 Intro to Computer Systems XXVIII–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Sockets

Comm.
Mechanism

Socket Socket

• You tell the system what you want by
setting up the socket

• The system deals with all the other
details

CS33 Intro to Computer Systems XXVIII–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Socket Parameters

• Styles of communication:
– stream: reliable, two-way byte streams
– datagram: unreliable, two-way record-oriented
– and others

• Communication domains
– UNIX

» endpoints (sockets) named with file-system pathnames
» supports stream and datagram
» trivial protocols: strictly for intra-machine use

– Internet
» endpoints named with IP addresses
» supports stream and datagram

– others
• Protocols

– the means for communicating data
– e.g., TCP/IP, UDP/IP

CS33 Intro to Computer Systems XXVIII–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Setting Things Up
• Socket (communication endpoint) is set up
• Datagram communication

– use sendto system call to send data to named
recipient

– use recvfrom system call to receive data and name
of sender

• Stream communication
– client connects to server

» server uses listen and accept system calls to receive
connections

» client uses connect system call to make connections
– data transmitted using send or write system calls
– data received using recv or read system calls

CS33 Intro to Computer Systems XXVIII–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Socket Addresses

• struct sockaddr
– represents a network address
– many sorts

» we use struct sockaddr_in
– we can ignore the details

» embedded in layers of software

• getaddrinfo()
– function used to obtain struct sockaddrʼs

CS33 Intro to Computer Systems XXVIII–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

getaddrinfo()

• int getaddrinfo(
const char *node,
const char *service,
const struct addrinfo *hints,
struct addrinfo **res);

– node is the host you want to look up (NULL for the machine
you are on)

– service is the service on that host (may be supplied as a
port number)

– hints are additional information describing what you want
– res is a list of struct sockaddr containing the results of the

search

CS33 Intro to Computer Systems XXVIII–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

UDP Server (1)

int main(int argc, char *argv[]) {
if (argc != 2) {

fprintf(stderr, "Usage: server port\n");
exit(1);

}

int udp_socket;
struct addrinfo udp_hints;

struct addrinfo *result;

CS33 Intro to Computer Systems XXVIII–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

UDP Server (2)

memset(&udp_hints, 0, sizeof(udp_hints));
udp_hints.ai_family = AF_INET;

udp_hints.ai_socktype = SOCK_DGRAM;
udp_hints.ai_flags = AI_PASSIVE;

int err;
if ((int err = getaddrinfo(NULL, argv[1],

&udp_hints, &result)) != 0) {
fprintf(stderr,"%s\n", gai_strerror(err));
exit(1);

}

CS33 Intro to Computer Systems XXVIII–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

UDP Server (3)

struct addrinfo *r;
for (r = result; r != NULL; r = r->ai_next) {

if ((udp_socket =
socket(r->ai_family, r->ai_socktype,
r->ai_protocol)) < 0) {

continue;
}

if (bind(udp_socket, r->ai_addr, r->ai_addrlen) >= 0) {
break;

}

close(udp_socket);
}

CS33 Intro to Computer Systems XXVIII–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

UDP Server (4)

if (r == NULL) {
fprintf(stderr, "Could not bind to %s\n", argv[1]);

exit(1);
}

freeaddrinfo(result);

CS33 Intro to Computer Systems XXVIII–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

UDP Server (5)

while (1) {
char buf[1024];

struct sockaddr from_addr;
int from_len = sizeof(struct sockaddr);
int msg_size;

CS33 Intro to Computer Systems XXVIII–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

UDP Server (6)

/* receive message from client */
if ((msg_size = recvfrom(udp_socket, buf, 1024, 0,

(struct sockaddr *)&from_addr, &from_len)) < 0) {
perror("recvfrom");
exit(1);

}
buf[msg_size] = 0;

CS33 Intro to Computer Systems XXVIII–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

UDP Server (7)

char host_name[256];
char serv_name[256];

if ((err = getnameinfo((struct sockaddr *)&from_addr,
from_len, host_name, sizeof(host_name),
serv_name, sizeof(serv_name), 0))) {

fprintf(stderr, "%s/n", gai_strerror(err));
exit(1);

}
printf("message from %s port %s:\n%s\n",

host_name, serv_name, buf);

CS33 Intro to Computer Systems XXVIII–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

UDP Server (8)

/* respond to client */
if (sendto(udp_socket, "thank you", 9, 0,

(const struct sockaddr *)&from_addr,
from_len) < 0) {

perror("sendto");

exit(1);
}

}
}

CS33 Intro to Computer Systems XXVIII–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

UDP Client (1)

int main(int argc, char *argv[]) {
int s;

int sock;
struct addrinfo hints;
struct addrinfo *result;

struct addrinfo *rp;

if (argc != 3) {
fprintf(stderr, "Usage: client host port\n");
exit(1);

}

CS33 Intro to Computer Systems XXVIII–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

UDP Client (2)

// Step 1: find the internet address of the server
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_DGRAM;

if ((s=getaddrinfo(argv[1], argv[2], &hints,
&result)) != 0) {

fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
exit(1);

}

CS33 Intro to Computer Systems XXVIII–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

UDP Client (3)

// Step 2: set up socket for UDP
for (rp = result; rp != NULL; rp - rp->ai_next) {

if ((sock = socket(rp->ai_family, rp->ai_socktype,
rp->ai_protocol)) >= 0) {

break;
}

}

if (rp == NULL) {
fprintf(stderr, "Could not communicate with %s\n",

argv[1]);

exit(1);
}
freeaddrinfo(result);

CS33 Intro to Computer Systems XXVIII–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

UDP Client (4)

// Step 3: communicate with server
communicate(sock, rp);

return 0;

}

CS33 Intro to Computer Systems XXVIII–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

UDP Client (5)

int communicate(int fd, struct addrinfo *rp) {
while (1) {

char buf[1024];
int msg_size;

if (fgets(buf, 1024, stdin) == 0)
break;

CS33 Intro to Computer Systems XXVIII–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

UDP Client (6)

/* send data to server */
if (sendto(fd, buf, strlen(buf), 0, rp->ai_addr,

rp->ai_addrlen) < 0) {
perror("sendto");
return -1;

}

CS33 Intro to Computer Systems XXVIII–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

UDP Client (7)

/* receive response from server */
if ((msg_size = recvfrom(fd, buf, 1024, 0, 0, 0)) < 0) {

perror("recvfrom");
exit(1);

}

buf[msg_size] = 0;
printf("Server says: %s\n", buf);

}
return 0;

}

CS33 Intro to Computer Systems XXVIII–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

Suppose a process on one machine sends a
datagram to a process on another machine. The
sender uses sendto and the receiver uses
recvfrom. There’s a momentary problem with
the network and the datagram doesn’t make it
to the receiving process. Its call to recvfrom

a) returns –1 (indicating an error)
b) returns 0
c) returns some other value
d) doesn’t return

CS33 Intro to Computer Systems XXVIII–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Reliable Communication

• The promise …
– what is sent is received
– order is preserved

• Set-up is required
– two parties agree to communicate
– within the implementation of the protocol:

» each side keeps track of what is sent, what is
received

» received data is acknowledged
» unack’d data is re-sent

• The standard scenario
– server receives connection requests
– client makes connection requests

CS33 Intro to Computer Systems XXVIII–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (1)

• Server steps
1) create socket

sfd = socket(AF_INET, SOCK_STREAM, 0);

sfd

CS33 Intro to Computer Systems XXVIII–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (2)

• Server steps
2) bind name to socket

bind(sfd,
(struct sockaddr *)&my_addr, sizeof(my_addr));

sfd

128.148.47.67

CS33 Intro to Computer Systems XXVIII–44 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (3)

• Server steps
3) put socket in “listening mode”

int listen(int sfd, int MaxQueueLength);

sfd

128.148.47.67:7326

connection
queue IP Address : Port Number

CS33 Intro to Computer Systems XXVIII–45 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (4)

• Client steps
1) create socket

cfd = socket(AF_INET, SOCK_STREAM, 0);

cfd

CS33 Intro to Computer Systems XXVIII–46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (5)

• Client steps
2) bind name to socket

bind(cfd,
(struct sockaddr *)&my_addr, sizeof(my_addr));

128.137.23.6:43

cfd

CS33 Intro to Computer Systems XXVIII–47 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (6)

• Client steps
3) connect to server

connect(cfd, (struct sockaddr *)&server_addr,
sizeof(server_addr));

128.137.23.6:43

cfd sfd

128.148.47.67:7326

CS33 Intro to Computer Systems XXVIII–48 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Streams in the Inet Domain (7)

• Server steps
4) accept connection

fd = accept((int)sfd, (struct sockaddr *)addr,
(int *)&addrlen);

128.137.23.6:43

cfd sfd

128.148.47.67:7326

fd

CS33 Intro to Computer Systems XXVIII–49 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

TCP Server (1)

int main(int argc, char *argv[]) {
if (argc != 2) {

fprintf(stderr, "Usage: port\n");
exit(1);

}

int lsocket;

struct addrinfo tcp_hints;
struct addrinfo *result;

CS33 Intro to Computer Systems XXVIII–50 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

TCP Server (2)

memset(&tcp_hints, 0, sizeof(tcp_hints));
tcp_hints.ai_family = AF_INET;

tcp_hints.ai_socktype = SOCK_STREAM;
tcp_hints.ai_flags = AI_PASSIVE;

int err;
if ((err = getaddrinfo(NULL, argv[1], &tcp_hints,

&result)) != 0) {
fprintf(stderr,"%s\n", gai_strerror(err));
exit(1);

}

CS33 Intro to Computer Systems XXVIII–51 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

TCP Server (3)

struct addrinfo *r;
for (r = result; r != NULL; r = r->ai_next) {

if ((lsocket =
socket(r->ai_family, r->ai_socktype,
r->ai_protocol)) < 0) {

continue;
}

if (bind(lsocket, r->ai_addr, r->ai_addrlen) >= 0) {
break;

}

close(lsocket);
}

CS33 Intro to Computer Systems XXVIII–52 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

TCP Server (4)

if (r == NULL) {
fprintf(stderr, "Could not find local interface %s\n");

exit(1);
}
freeaddrinfo(result);

if (listen(lsocket, 5) < 0) {
perror("listen");
exit(1);

}

CS33 Intro to Computer Systems XXVIII–53 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

TCP Server (5)

while (1) {
int csock;

struct sockaddr client_addr;
int client_len = sizeof(client_addr);

csock = accept(lsocket, &client_addr, &client_len);
if (csock == -1) {

perror("accept");
exit(1);

}

CS33 Intro to Computer Systems XXVIII–54 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

TCP Server (6)

char host_name[256];
char serv_name[256];

int err;
if ((err = getnameinfo(&client_addr,

client_len, host_name, sizeof(host_name),
serv_name, sizeof(serv_name), 0))) {

fprintf(stderr, "%s/n", gai_strerror(err));

exit(1);
}
printf("received connection from %s port %s\n",

host_name, serv_name);

CS33 Intro to Computer Systems XXVIII–55 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

TCP Server (7)

switch (fork()) {
case -1:

perror("fork");
exit(1);

case 0:

serve(csock);
exit(0);

default:
close(csock);
break;

}
}
return 0;

}

CS33 Intro to Computer Systems XXVIII–56 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

TCP Server (8)

void serve(int fd) {
char buf[1024];

int count;

while ((count = read(fd, buf, 1024)) > 0) {

write(1, buf, count);
}

if (count == -1) {
perror("read");
exit(1);

}
printf("connection terminated\n");

}

CS33 Intro to Computer Systems XXVIII–57 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

TCP Client (1)

int main(int argc, char *argv[]) {
int s;

int sock;
struct addrinfo hints;
struct addrinfo *result;

struct addrinfo *rp;
char buf[1024];

if (argc != 3) {
fprintf(stderr, "Usage: tcpClient host port\n");

exit(1);
}

CS33 Intro to Computer Systems XXVIII–58 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

TCP Client (2)

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET;

hints.ai_socktype = SOCK_STREAM;

if ((s=getaddrinfo(argv[1], argv[2], &hints, &result))

!= 0) {
fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));

exit(1);
}

CS33 Intro to Computer Systems XXVIII–59 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

TCP Client (3)

for (rp = result; rp != NULL; rp = rp->ai_next) {
if ((sock = socket(rp->ai_family, rp->ai_socktype,

rp->ai_protocol)) < 0) {
continue;

}

if (connect(sock, rp->ai_addr, rp->ai_addrlen) >= 0) {
break;

}
close(sock);

}

CS33 Intro to Computer Systems XXVIII–60 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

TCP Client (4)

if (rp == NULL) {
fprintf(stderr, "Could not connect to %s\n", argv[1]);

exit(1);
}
freeaddrinfo(result);

CS33 Intro to Computer Systems XXVIII–61 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

TCP Client (5)

while(fgets(buf, 1024, stdin) != 0) {
if (write(sock, buf, strlen(buf)) < 0) {

perror("write");
exit(1);

}

}
return 0;

}

CS33 Intro to Computer Systems XXVIII–62 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 3

The previous slide contains
write(sock, buf, strlen(buf))

If data is lost and must be retransmitted
a) write returns an error so the caller can

retransmit the data.
b) nothing happens as far as the application

code is concerned, the data is retransmitted
automatically.

CS33 Intro to Computer Systems XXVIII–63 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 4

A previous slide contains
write(sock, buf, strlen(buf))

We lose the connection to the other party
(perhaps a network cable is cut).
a) write returns an error so the caller can

reconnect, if desired.
b) nothing happens as far as the application

code is concerned, the connection is
reestablished automatically.

