
CS33 Intro to Computer Systems XXX–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Linking and Libraries (2)



CS33 Intro to Computer Systems XXX–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Dynamic Linking

• Executable is not fully linked
– contains list of needed libraries

• Linkages set up when executable is run



CS33 Intro to Computer Systems XXX–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Benefits

• Without dynamic linking
– every executable contains copy of printf (and other 

stuff)
» waste of disk space
» waste of primary memory

• With dynamic linking
– just one copy of printf

» shared by all



Linux supports two kinds of libraries — static libraries, contained in archives, whose
names end with “.a” (e.g. libc.a) and shared objects, whose names end with “.so” (e.g.
libc.so). When ld is invoked to handle the linking of object code, it is normally given a
list of libraries in which to find unresolved references. If it resolves a reference within a
.a file, it copies the code from the file and statically links it into the object code.
However, if it resolves the reference within a .so file, it records the name of the shared
object (not the complete path, just the final component) and postpones actual linking
until the program is executed.

If the program is fully bound and relocated, then it is ready for direct execution.
However, if it is not fully bound and relocated, then ld arranges things so that when the
program is executed, rather than starting with the program’s main function, a runtime
version of ld, called ld-linux.so, is called first. ld-linux.so maps all the required libraries
into the address space and then calls the main routine.

CS33 Intro to Computer Systems XXX–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Shared Objects: Unix’s Dynamic 
Linking

1 Compile program
2 Track down references with ld

– archives (containing relocatable objects) in “.a” 
files are statically linked

– shared objects in “.so” files are dynamically linked
» names of needed .so files included with executable

3 Run program
– ld-linux.so is invoked first to complete the linking 

and relocation steps, if necessary



The –fPIC flag tells gcc to produce “position-independent code,” which is
something we discuss soon. The ld command invokes the loader directly. The –
shared flag tells it to created a shared object. In this case, it’s creating it from
the object file myputs.o and calling the shared object libmyputs.so.

The “-Wl,-rpath /home/twd/libs” flag (the third character of the string is a
lower-case L) tells the loader to indicate in the executable (prog) that ld-
linux.so should look in the indicated directory for shared objects. (The “-Wl”
part of the flag tells gcc to pass the rest of the flag to the loader.)

CS33 Intro to Computer Systems XXX–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Creating a Shared Library

$ gcc -fPIC -c myputs.c

$ ld -shared -o libmyputs.so myputs.o

$ gcc -o prog prog.c –fPIC -L. –lpriv1 –lmyputs -Wl,-rpath \

/home/twd/libs

$ ldd prog

linux-vdso.so.1 =>  (0x00007fff235ff000)

libmyputs.so => /home/twd/libs/libmyputs.so (0x00007f821370f000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f821314e000)

/lib64/ld-linux-x86-64.so.2 (0x00007f8213912000)

$ ./prog

My puts: sub1

My puts: sub2

My puts: sub3



CS33 Intro to Computer Systems XXX–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Order Still Matters

• All shared objects listed in the executable are 
loaded into the address space
– whether needed or not

• ld-linux.so will find anything that’s there
– looks in the order in which shared objects are listed



CS33 Intro to Computer Systems XXX–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

A Problem

• You've put together a library of useful 
functions
– libgoodstuff.so

• Lots of people are using it
• It occurs to you that you can make it even 

better by adding an extra argument to a few of 
the functions
– doing so will break all programs that currently use 

these functions
• You need a means so that old code will 

continue to use the old version, but new code 
will use the new version



CS33 Intro to Computer Systems XXX–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

A Solution

• The two versions of your program coexist
– libgoodstuff.so.1
– libgoodstuff.so.2

• You arrange so that old code uses the old 
version, new code uses the new

• Most users of your code donʼt really want to 
have to care about version numbers
– they want always to link with libgoodstuff.so
– and get the version that was current when they 

wrote their programs



Here we are creating two versions of libgoodstuff, in libgoodstuff.so.1 and in
libgoodstuff.so.2. Each is created by invoking the loader directly via the “ld” command.
The “-soname” flag tells the loader to include in the shared object its name, which is the
string following the flag (“libgoodstuff.so.1” in the first call to ld). The effect of the “ln –s”
command is to create a new name (its last argument) in the file system that refers to the
same file as that referred to by ln’s next-to-last argument. Thus, after the first call to ln –
s, libgoodstuff.so refers to the same file as does libgoodstuff.so.1. Thus, the second
invocation of gcc, where it refers to –lgoodstuff (which expands to libgoodstuff.so), is
actually referring to libgoodstuff.so.1.

Then we create a new version of goodstuff and from it a new shared object called
libgoodstuff.so.2 (i.e., version 2). The call to “rm” removes the name libgoodstuff.so (but
not the file it refers to, which is still referred to by libgoodstuff.so.1). Then ln is called
again to make libgoodstuff.so now refer to the same file as does libgoodstuff.so.2. Thus,
when prog2 is linked, the reference to –lgoodstuff expands to libgoodstuff.so, which now
refers to the same file as does libgoodstuff.so.2.

If prog1 is now run, it refers to libgoodstuff.so.1, so it gets the old version (version 1),
but if prog2 is run, it refers to libgoodstuff.so.2, so it gets the new version (version 2).
Thus, programs using both versions of goodstuff can coexist.

CS33 Intro to Computer Systems XXX–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Versioning

$ gcc –fPIC -c goodstuff.c

$ ld -shared -soname libgoodstuff.so.1 \

-o libgoodstuff.so.1 goodstuff.o

$ ln -s libgoodstuff.so.1 libgoodstuff.so

$ gcc -o prog1 prog1.c -L. -lgoodstuff \

–Wl,-rpath .

$ vi goodstuff.c

$ gcc –fPIC -c goodstuff.c

$ ld -shared -soname libgoodstuff.so.2 \

-o libgoodstuff.so.2 goodstuff.o

$ rm -f libgoodstuff.so

$ ln -s libgoodstuff.so.2 libgoodstuff.so

$ gcc -o prog2 prog2.c -L. -lgoodstuff \

-Wl,-rpath .



The idea expressed in the slide is that when prog calls puts, control first goes
to the wrapper, which then calls puts.

Thus references to puts from within prog actually refer to wrapper. But if we
do this uniformly, replacing all references to puts with wrapper, how does
wrapper call puts?

CS33 Intro to Computer Systems XXX–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Interpositioning

prog

puts

wrapper



__wrap_puts is the “wrapper” for puts. __real_puts is the “real” puts function.
What we want is for calls to puts to go to __wrap_puts, and calls to
__real_puts to go to the real puts routine (in stdio).

CS33 Intro to Computer Systems XXX–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

How To …

int __wrap_puts(const char *s) {

int __real_puts(const char *);

write(2, "calling myputs: ", 16);

return __real_puts(s);

}



The arguments to gcc shown in the slide cause what we asked for in the
previous slide to actually happen. Calls to puts go to __wrap_puts, and calls to
__real_puts go to the real puts function.

CS33 Intro to Computer Systems XXX–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Compiling/Linking It

$ cat tputs.c

int main() {

puts("This is a boring message.");

return 0;

}

$ gcc -o tputs -Wl,--wrap=puts tputs.c myputs.c

$ ./tputs

calling myputs: This is a boring message.

$



An alternative approach to wrapping is to invoke ld-linux.so directly from the
program, and have it find the real puts function. The call to dlsym above
directly invokes ld-linux.so, asking it (as given by the first argument) to find
the next definition of puts in the list of libraries. It returns the location of that
routine, which is then called (*pptr).

CS33 Intro to Computer Systems XXX–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

How To (Alternative Approach) …

#include <dlfcn.h>

int puts(const char *s) {

int (*pptr)(const char *);

pptr = (int(*)())dlsym(RTLD_NEXT, "puts");

write(2, "calling myputs: ", 16);

return (*pptr)(s);

}



CS33 Intro to Computer Systems XXX–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

What’s Going On …

• gcc/ld
– compiles code
– does static linking

» searches list of libraries
» adds references to shared objects

• runtime
– program invokes ld-linux.so to finish linking

» maps in shared objects
» does relocation and procedure linking as required

– dlsym invokes ld-linux.so to do more linking
» RTLD_NEXT says to use the next (second) 

occurrence of the symbol



CS33 Intro to Computer Systems XXX–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Delayed Wrapping

• LD_PRELOAD
– environment variable checked by ld-linux.so
– specifies additional shared objects to search (first) 

when program is started



The example uses the syntax of the bash shell. Other shells have different syntaxes for
this,

CS33 Intro to Computer Systems XXX–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Environment Variables

• Another form of exec
–int execve(const char *filename,

char *const argv[],
char *const envp[]);

• envp is an array of strings, of the form
– key=value

• programs can search for values, given a key
• example

– export PATH=~/bin:/bin:/usr/bin:/course/cs0330/bin



Here we add "LD_PRELOAD=./libmyputs.so.1" to the environment. The export
command instructs the shell to supply this as part of the environment for the
commands it runs.

CS33 Intro to Computer Systems XXX–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Example

$ gcc -o tputs tputs.c

$ ./tputs

This is a boring message.

$ export LD_PRELOAD=./libmyputs.so

$ ./tputs

calling myputs: This is a boring message.

$



CS33 Intro to Computer Systems XXX–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Mmapping Libraries

text

data
bss

dynamic

stack

available for 
mmap

C library

my lib



CS33 Intro to Computer Systems XXX–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Problem

• How is relocation handled?



One simple approach to relocation is to avoid it: everything is pre-assigned a location in
memory–this is known as pre-relocation.

Assuming we’re using pre-relocation, the C library and the math library would be
assumed to be in virtual memory at their pre-assigned locations. In the slide, these
would be starting at locations 1,000,000 and 3,000,000, respectively. Let’s suppose
printf, which is in the C library, is at location 1,000,400. Thus, calls to printf at static
link time could be linked to that address. If the math library also contains calls to printf,
these would be linked to that address as well. The C library might contain a global
identifier, such as stdfiles. Its address would also be known.

CS33 Intro to Computer Systems XXX–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Pre-Relocation

C library

math library

1,000,000

3,000,000

printf: 1,000,400

call printf
1000400

stdfiles: 1,200,600

&stdfiles

call printf



Pre-relocation doesn’t work if we have two libraries pre-assigned such that they overlap.
If so, at least one of the two will have to be moved, necessitating relocation.

CS33 Intro to Computer Systems XXX–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

But …

Mary’s library

5,000,000

my library

5,500,000



CS33 Intro to Computer Systems XXX–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

But …

Mary’s library

5,000,000

my library

5,500,000

8,000,000



CS33 Intro to Computer Systems XXX–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

We need to relocate all references to Mary’s 
library in my library. What option should we 
give to mmap when we map my library into our 
address space? 

a) the MAP_PRIVATE option
b) the MAP_SHARED option
c) mmap can’t be used in this situation



CS33 Intro to Computer Systems XXX–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Relocation Revisited

• Modify shared code to effect relocation
– result is no longer shared!

• Separate shared code from (unshared) 
addresses
– position-independent code (PIC)
– code can be placed anywhere
– addresses in separate private section

» pointed to by a register



The C library (and other libraries) can be mapped into different locations in different
processes’ address spaces.

CS33 Intro to Computer Systems XXX–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Mapping Shared Objects

Process A

printf( )

Process B

printf( )
stdio

printf( )



For this slide, we assume relocation is dealt with through the use of position-
independent code (PIC).

CS33 Intro to Computer Systems XXX–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Mapping printf into the Address Space
• Printf’s text

– read-only
– can it be shared?

» yes: use MAP_SHARED

• Printf’s data
– read-write
– not shared with other processes
– initial values come from file
– can mmap be used?

» MAP_SHARED wouldn’t work
• changes made to data by one process would be 

seen by others
» MAP_PRIVATE does work!

• mapped region is initialized from file
• changes are private



CS33 Intro to Computer Systems XXX–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Mapping printf

page 6
page 7

page 31
page 32

page 3
page 4

page 41
page 42

Process 1

Process 2

printf
text

printf
data

printf
text

printf
data

Real Memory

P1’s printf
page 2

P1’s printf
page 3

P2’s printf
page 2

printf
page 0

Disk

page 0

page 1

page 2

page 3

printf

text

data

printf
page 1



To provide position-independent code on x86-64, ELF requires three data structures for
each dynamic executable (i.e., the program binary loaded by exec) and shared object: the
procedure-linkage table, the global-offset table, and the relocation table. To simplify
discussion, we refer to dynamic executables and shared objects as modules. The
procedure linkage table contains the code that’s actually called when control is to be
transferred to an externally defined routine. It is shared by all processes using the
associated executable or object, and makes use of data in the global-object table to link
the caller to the called program. Each process has its own private copy of each global-
object table. It contains the relocated addresses of all externally defined symbols.
Finally, the relocation table contains much information about each module. What is
used for linking is relocation information and the symbol table, as we explain in the next
few slides.

How things work is similar for other architectures, but definitely not the same.

CS33 Intro to Computer Systems XXX–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Position-Independent Code

• Produced by gcc when given the –fPIC flag
• Processor-dependent; x86-64:

– each dynamic executable and shared object has:
» procedure-linkage table

• shared, read-only executable code
• essentially stubs for calling functions

» global-offset table
• private, read-write data
• relocated dynamically for each process

» relocation table
• shared, read-only data
• contains relocation info and symbol table



To establish position-independent references to global variables, the compiler produces,
for each module, a global-offset table. Modules refer to global variables indirectly by
looking up their addresses in the table, using PC-relative addressing. The item needed is
at some fixed offset from the beginning of the table. When the module is loaded into
memory, ld-linux.so is responsible for putting into it the actual addresses of all the
needed global variables.

CS33 Intro to Computer Systems XXX–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Global-Offset Table:
Data References

errno address

myglob address

Global Offset Table

errno

myglob



CS33 Intro to Computer Systems XXX–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Functions in Shared Objects

• Lots of them
• Many are never used
• Fix up linkages on demand



The top half of the slide contains an excerpt from a C program. For the bottom half,
we've compiled the program and have printed what "objdump –d" produces for main.
Note that the call to puts is actually a call to "puts@plt", which is a reference to the
procedure linkage table.

CS33 Intro to Computer Systems XXX–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

An Example
int main( ) {

puts("Hello world\n");

…
return 0;

}

00000000000006b0 <main>:
6b0: 55                   push   %rbp
6b1: 48 89 e5             mov %rsp,%rbp
6b4: 48 8d 3d 99 00 00 00 lea    0x99(%rip),%rdi
6bb: e8 a0 fe ff ff callq 560 <puts@plt>
…



Dealing with references to external procedures is considerably more complicated than
dealing with references to external data. This slide shows the procedure linkage table,
global offset table, and relocation information for a module that contains references to
external procedures puts and name2. Let’s follow a call to procedure puts. The general
idea is before the first call to puts, the actual address of the puts procedure is not
recorded in the global-offset table, Instead, the first call to puts actually invokes ld-
linux.so, which is passed parameters indicating what is really wanted. It then finds puts
and updates the global-offset table so that things are more direct on subsequent calls.

To make this happen, references from the module to puts are statically linked to entry
.puts in the procedure-linkage table. This entry contains an unconditional jump (via PC-
relative addressing) to the address contained in the puts offset of the global-offset table.
Initially this address is of the instruction following the jump instruction, which contains
code that pushes onto the stack the offset of the puts entry in the relocation table
(which contains a reference to the name, “puts”, as well as the offset within the global-
offset-table of where the actual address of puts will be written). The next instruction is
an unconditional jump to the beginning of the procedure-linkage table, entry .PLT0.
Here there’s code that pushes onto the stack the second 64-bit word of the global-offset
table, which contains a value identifying this module. The following instruction is an
unconditional jump to the address in the third word of the global-offset table, which is
conveniently the address of ld-linux.so. Thus, control finally passes to ld-linux.so, which
looks back on the stack and determines which module has called it and what that
module really wants to call. It figures this out based on the module-identification word
and the relocation table entry, which contains the offset of the puts entry in the global-
offset table (which is what must be updated) and the index of puts in the symbol table
(so it knows the name of what it must locate).

CS33 Intro to Computer Systems XXX–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Before Calling puts
.PLT0:

pushq GOT+8(%rip)
jmp *GOT+16(%rip)
nop; nop
nop; nop

.puts:
jmp *puts@GOT(%rip)

.putsnext
pushq $putsRelOffset
jmp .PLT0

.PLT2:
jmp *name2@GOT(%rip)

.PLT2next
pushq $name2RelOffset
jmp .PLT0

GOT:
.quad _DYNAMIC
.quad identification
.quad ld-linux.so

puts:
.quad .putsnext

name2:
.quad .PLT2next

GOT_offset(puts), symx(puts)

Relocation Table

Relocation info:

GOT_offset(name2), symx(name2)Procedure-Linkage Table



Finally, ld-linux.so writes the actual address of the puts procedure into the puts entry of
the global-offset table, and, after unwinding the stack a bit, passes control to puts. On
subsequent calls by the module to puts, since the global-offset table now contains puts’s
address, control goes to it more directly, without an invocation of ld-linux.so.

CS33 Intro to Computer Systems XXX–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

After Calling puts
.PLT0:

pushq GOT+8(%rip)
jmp *GOT+16(%rip)
nop; nop
nop; nop

.puts:
jmp *puts@GOT(%rip)

.putsnext
pushq $putsRelOffset
jmp .PLT0

.PLT2:
jmp *name2@GOT(%rip)

.PLT2next
pushq $name2RelOffset
jmp .PLT0

GOT:
.quad _DYNAMIC
.quad identification
.quad ld-linux.so

puts:

.quad puts
name2:

.quad .PLT2next

GOT_offset(puts), symx(puts)

Relocation Table

Relocation info:

GOT_offset(name2), symx(name2)Procedure-Linkage Table



CS33 Intro to Computer Systems XXX–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

On the second and subsequent calls to puts

a) control goes directly to puts
b) control goes to an instruction that jumps 

to puts
c) control still goes to ld-linux.so, but it now 

transfers control directly to puts



CS33 Intro to Computer Systems XXX–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Multithreaded Programming (1)



CS33 Intro to Computer Systems XXX–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Multithreaded Programming

• A thread is a virtual processor
– an independent agent executing instructions

• Multiple threads
– multiple independent agents executing instructions



A thread is the abstraction of a processor — it is a thread of control. We are
accustomed to writing single-threaded programs and to having multiple single-threaded
programs running on our computers. Why does one want multiple threads running in
the same program? Putting it only somewhat over-dramatically, programming with
multiple threads is a powerful paradigm.

So, what is so special about this paradigm? Programming with threads is a natural
means for dealing with concurrency. As we will see, concurrency comes up in
numerous situations. A common misconception is that it is a useful concept only on
multiprocessors. Threads do allow us to exploit the features of a multiprocessor, but
they are equally useful on uniprocessors — in many instances a multithreaded solution
to a problem is simpler to write, simpler to understand, and simpler to debug than a
single-threaded solution to the same problem.

CS33 Intro to Computer Systems XXX–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Why Threads?

• Many things are easier to do with threads
• Many things run faster with threads



For a simple example of a problem that is more easily solved with threads than without,
let’s look at the stream relay example from the previous lecture.

CS33 Intro to Computer Systems XXX–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

A Simple Example

Relay

Source

Sink

Sink

Source

pipe

pipe

pipe

pipe



Here’s the event-oriented solution we devised earlier that uses select (and is rather
complicated).

CS33 Intro to Computer Systems XXX–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Life Without Threads
void relay(int left, int right) {

fd_set rd, wr;
int left_read = 1, right_write = 0;
int right_read = 1, left_write = 0;
int sizeLR, sizeRL, wret;
char bufLR[BSIZE], bufRL[BSIZE];

char *bufpR, *bufpL;
int maxFD = max(left, right) + 1;

fcntl(left, F_SETFL, O_NONBLOCK);
fcntl(right, F_SETFL, O_NONBLOCK);

while(1) {
FD_ZERO(&rd);
FD_ZERO(&wr);
if (left_read)
FD_SET(left, &rd);

if (right_read)
FD_SET(right, &rd);

if (left_write)
FD_SET(left, &wr);

if (right_write)
FD_SET(right, &wr);

select(maxFD, &rd, &wr, 0, 0);

if (FD_ISSET(left, &rd)) {
sizeLR = read(left, bufLR, BSIZE);
left_read = 0;
right_write = 1;
bufpR = bufLR;

}

if (FD_ISSET(right, &rd)) {
sizeRL = read(right, bufRL, BSIZE);
right_read = 0;
left_write = 1;
bufpL = bufRL;

}
if (FD_ISSET(right, &wr)) {

if ((wret = write(right, bufpR, sizeLR)) == sizeLR) {

left_read = 1; right_write = 0;
} else {

sizeLR -= wret; bufpR += wret;
}

}
if (FD_ISSET(left, &wr)) {

if ((wret = write(left, bufpL, sizeRL)) == sizeRL) {
right_read = 1; left_write = 0;

} else {
sizeRL -= wret; bufpL += wret;

}
}

}
return 0;

}



Here’s an essentially equivalent solution that uses threads rather than select. We’ve left
out the code that creates the threads (we’ll see that pretty soon), but what’s shown is
executed by each of two threads. One has source set to the left side and destination to
the right side, the other vice versa.

CS33 Intro to Computer Systems XXX–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Life With Threads

void copy(int source, int destination) {

struct args *targs = args;

char buf[BSIZE];

while(1) {

int len = read(source, buf, BSIZE);

write(destination, buf, len);

}

}



Threads provide concurrency, but so do processes. So, what is the difference between
two single-threaded processes and one two-threaded process? First of all, if one process
already exists, it is much cheaper to create another thread in the existing process than
to create a new process. Switching between the contexts of two threads in the same
process is also often cheaper than switching between the contexts of two threads in
different processes. Finally, two threads in one process share everything — both address
space and open files; the two can communicate without having to copy data. Though two
different processes can share memory in modern Unix systems, the most common forms
of interprocess communication are far more expensive.

CS33 Intro to Computer Systems XXX–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Processes vs. Threads

Process 1 Process 2 Process 3



Here is another server example, a database server handling multiple clients. The single-
threaded approach to dealing with these requests is to handle them sequentially or to
multiplex them explicitly. The former approach would be unfair to quick requests
occurring behind lengthy requests, and the latter would require fairly complex and error-
prone code.

CS33 Intro to Computer Systems XXX–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Single-Threaded
Database Server

Database

Requests



We now rearchitect our server to be multithreaded, assigning a separate thread to each
request. The code is as simple as in the sequential approach and as fair as in the
multiplexed approach. Some synchronization of access to the database is required, a
topic we will discuss soon.

CS33 Intro to Computer Systems XXX–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Multithreaded Database Server

Database

Requests



CS33 Intro to Computer Systems XXX–44 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Single-Core Chips



CS33 Intro to Computer Systems XXX–45 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Dual-Core Chips



CS33 Intro to Computer Systems XXX–46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Multi-Core Chips



CS33 Intro to Computer Systems XXX–47 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Good News/Bad News

J Good news
– multi-threaded programs can take advantage of 

multi-core chips (single-threaded programs cannot)

L Bad news
– it’s not easy

» must have parallel algorithm
• employing at least as many threads as 

processors
• threads must keep processors busy

– doing useful work



CS33 Intro to Computer Systems XXX–48 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Matrix Multiplication Revisited

× =

m

n

n

p

m

p

A B C



Despite the long-known advantages of programming with threads, only relatively
recently have standard APIs for multithreaded programming been developed. The most
important of these APIs, at least in the Unix world, is the one developed by the group
known as POSIX 1003.4a. This effort took a number of years and in the summer of 1995
resulted in an approved standard, which is now known by the number 1003.1c. In
2000, the POSIX advanced realtime standard, 1003.1j, was approved. It contains a
number of additional features added to POSIX threads.

Microsoft, characteristically, produced a threads package whose interface has little in
common with those of the Unix world. Moreover, there are significant differences
between the Microsoft and POSIX approaches — some of the constructs of one cannot be
easily implemented in terms of the constructs of the other, and vice versa. Despite this,
both approaches are equally useful for multithreaded programming.

CS33 Intro to Computer Systems XXX–49 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Standards

• POSIX 1003.4a ® 1003.1c ® 1003.1j

• Microsoft
– Win32/64


