
CS33 Intro to Computer Systems XXXIII–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Multithreaded Programming III

In the producer-consumer problem we have two classes of threads, producers and
consumers, and a buffer containing a fixed number of slots. A producer thread attempts
to put something into the next empty buffer slot, a consumer thread attempts to take
something out of the next occupied buffer slot. The synchronization conditions are that
producers cannot proceed unless there are empty slots and consumers cannot proceed
unless there are occupied slots.

This is a classic, but frequently occurring synchronization problem. For example, the
heart of the implementation of UNIX pipes is an instance of this problem.

CS33 Intro to Computer Systems XXXIII–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Producer-Consumer Problem

ProducerConsumer

Illustrated in the slide is a simple pseudocode construct, the guarded command, that
we use to describe how various synchronization operations work. The idea is that the
code within the square brackets is executed only when the guard (which could be some
arbitrary boolean expression) evaluates to true. Furthermore, this code within the
square brackets is executed atomically, i.e., the effect is that nothing else happens in
the program while the code is executed. Note that the code is not necessarily executed
as soon as the guard evaluates to true: we are assured only that when execution of the
code begins, the guard is true.
Keep in mind that this is strictly pseudocode: it’s not part of POSIX threads and is not
necessarily even implementable (at least not for the general case).

CS33 Intro to Computer Systems XXXIII–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Guarded Commands

when (guard) [
/*

once the guard is true, execute this
code atomically
*/

...

]

Another synchronization construct is the semaphore, designed by Edsger Dijkstra in the
1960s. A semaphore behaves as if it were a nonnegative integer, but it can be operated
on only by the semaphore operations. Dijkstra defined two of these: P (for prolagen, a
made-up word derived from proberen te verlagen, which means “try to decrease” in
Dutch) and V (for verhogen, “increase” in Dutch). Their semantics are shown in the
slide.

We think of operations on semaphores as being a special case of guarded commands —
a special case that occurs frequently enough to warrant a highly optimized
implementation.

CS33 Intro to Computer Systems XXXIII–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Semaphores

• P(S) operation:
when (S > 0) [

S = S – 1;
]

• V(S) operation:
[S = S + 1;]

Here’s a solution for the producer/consumer problem using semaphores — note that it
works only with a single producer and a single consumer, though it can be generalized
to work with multiple producers and consumers.

CS33 Intro to Computer Systems XXXIII–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Producer/Consumer with
Semaphores

Semaphore empty = BSIZE;
Semaphore occupied = 0;
int nextin = 0;
int nextout = 0;

void Produce(char item) {
P(empty);
buf[nextin] = item;
if (++nextin >= BSIZE)
nextin = 0;

V(occupied);
}

char Consume() {
char item;
P(occupied);
item = buf[nextout];
if (++nextout >= BSIZE)
nextout = 0;

V(empty);
return item;

}

Here is the POSIX interface for operations on semaphores. (These operation names are
not typos — the “pthread_” prefix really is not used here, since the semaphore
operations come from a different POSIX specification — 1003.1b. Note also the need for
the header file, semaphore.h) When creating a semaphore (sem_init), rather than
supplying an attributes structure, one supplies a single integer argument, pshared,
which indicates whether the semaphore is to be used only by threads of one process
(pshared = 0) or by multiple processes (pshared = 1). The third argument to sem_init is
the semaphore’s initial value.

All the semaphore operations return zero if successful; otherwise, they return an error
code. The function sem_trywait is similar to sem_wait (and to the P operation) except
that if the semaphore’s value cannot be decremented immediately, then, rather than
wait, it returns -1 and sets errno to EAGAIN.

CS33 Intro to Computer Systems XXXIII–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

POSIX Semaphores

#include <semaphore.h>

int sem_init(sem_t *semaphore, int pshared, int init);
int sem_destroy(sem_t *semaphore);
int sem_wait(sem_t *semaphore);

/* P operation */

int sem_trywait(sem_t *semaphore);
/* conditional P operation */

int sem_post(sem_t *semaphore);
/* V operation */

Here is the producer-consumer solution implemented with POSIX semaphores.

CS33 Intro to Computer Systems XXXIII–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Producer-Consumer with POSIX
Semaphores

void produce(char item) {

sem_wait(&empty);
buf[nextin] = item;
if (++nextin >= BSIZE)
nextin = 0;

sem_post(&occupied);
}

char consume() {
char item;
sem_wait(&occupied);
item = buf[nextout];
if (++nextout >= BSIZE)
nextout = 0;

sem_post(&empty);
return item;

}

sem_init(&empty, 0, BSIZE);
sem_init(&occupied, 0, 0);
int nextin = 0;
int nextout = 0;

CS33 Intro to Computer Systems XXXIII–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

Does the POSIX version of the producer-
consumer solution work with multiple
producers and consumers?

a) Yes
b) No, but it can be made to work by using

mutexes to make sure that only one thread
is executing the producer code at a time and
only one thread is executing the consumer
code at a time

c) It can’t easily be made to work

We’d like to design a “start-stop” interface. A thread calling wait_for_start waits for the
start button to be pressed. Once it’s been pressed, those waiting will be released and
subsequent threads calling wait_for_start will return immediately. However, once the
stop button is pressed, then all threads calling wait_for_start will wait until the start
button is pressed again.

CS33 Intro to Computer Systems XXXIII–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Start/Stop

• Start/Stop interface

void wait_for_start(state_t *s);

void start(state_t *s);

void stop(state_t *s);

Here’s a possible implementation. Callers of sleep don’t return from sleep until
wakeup_all has been called.

However, calls to wakeup_all merely wakeup all who are currently in sleep. They have
no effect on subsequent calls to sleep. Thus, there could be a problem in the above code
if a thread calls start while another thread has just checked the state in wait_for_start,
but hasn’t yet called sleep.

CS33 Intro to Computer Systems XXXIII–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Start/Stop

• Start/Stop interface

void wait_for_start(state_t *s){
if (s->state == stopped)
sleep();

}
void start(state_t *s) {
state = started;
wakeup_all();

}

void stop(state_t *s) {
state = stopped;

}

Here’s one attempt to fix the problem of the previous slide using mutexes. It clearly
doesn’t help – the thread calling start might get the mutex and call wakeup_all just
before the other thread calls sleep.

CS33 Intro to Computer Systems XXXIII–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){
pthread_mutex_lock(&s->mutex);
if (s->state == stopped) {
pthread_mutex_unlock(&s->mutex);
sleep();

else pthread_mutex_unlock(&s->mutex);
}
void start(state_t *s) {
pthread_mutex_lock(&s->mutex);
state = started;
wakeup_all();
pthread_mutex_unlock(&s->mutex);

}

This code is perhaps worse, the thread waits in sleep with the mutex locked, preventing
any thread from calling wakeup_all.

CS33 Intro to Computer Systems XXXIII–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){
pthread_mutex_lock(&s->mutex);
if (s->state == stopped) {
sleep();

pthread_mutex_unlock(&s->mutex);
}
void start(state_t *s) {
pthread_mutex_lock(&s->mutex);
state = started;
wakeup_all();
pthread_mutex_unlock(&s->mutex);

}

This code actually works; it uses a POSIX threads construct known as the condition
variable. The thread in wait_for_start first locks the mutex, then checks the state. If it’s
stopped, it calls pthread_cond_wait, which, all at once, puts the calling thread to sleep,
enqueues it on the queue (known as a condition variable), and unlocks the mutex.

A thread calling start can’t proceed until it has locked the mutex, thus ensuring that no
thread is in the midst of checking the state and then calling pthread_cond_wait in
wait_for_start. Once the thread calling start has the mutex, it sets state to started and
calls pthread_broadcast, waking up all threads who are waiting on the queue (the
condition variable). It then unlocks the mutex.

The thread that was waiting within pthread_cond_wait is woken up, but it doesn’t
return from the call to pthread_cond_wait until it locks the mutex. Thus, it enters
pthread_cond_wait with the mutex locked and exits it with the mutex_locked. While its
inside pthread_cond_wait, it does not have the lock on the mutex (though some other
thread might).

Thus, this code is a correct implementation of the start/stop interface.

CS33 Intro to Computer Systems XXXIII–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){
pthread_mutex_lock(&s->mutex);
while(s->state == stopped)
pthread_cond_wait(&s->queue, &s->mutex);

pthread_mutex_unlock(&s->mutex);
}
void start(state_t *s) {
pthread_mutex_lock(&s->mutex);
s->state = started;
pthread_cond_broadcast(&s->queue);
pthread_mutex_unlock(&s->mutex);

}

Condition variables are another means for synchronization in POSIX; they represent
queues of threads waiting to be woken by other threads and can be used to implement
guarded commands, as shown in the slide. Though they are rather complicated at first
glance, they are even more complicated when you really get into them.

A thread puts itself to sleep and joins the queue of threads associated with a condition
variable by calling pthread_cond_wait. When it places this call, it must have some
mutex locked, and it passes the mutex as the second argument. As part of the call, the
mutex is unlocked and the thread is put to sleep, all in a single atomic step: i.e.,
nothing can happen that might affect the thread between the moments when the mutex
is unlocked and when the thread goes to sleep. Threads queued on a condition variable
are released in first-in-first-out order. They are released in response to calls to
pthread_cond_signal (which releases the first thread in line) and
pthread_cond_broadcast (which releases all threads). However, before a released thread
may return from pthread_cond_wait, it first relocks the mutex. Thus, only one thread at
a time actually returns from pthread_cond_wait. If a call to either function is made
when no threads are queued on the condition variable, nothing happens — the fact that
a call had been made is not remembered.

So far, though complicated, the description is rational. Now for the weird part: a thread
may be released from the condition-variable queue at any moment, perhaps
spontaneously, perhaps due to sunspots. Thus, it’s extremely important that, after
pthread_cond_wait returns, that the caller check to make sure that it really should
have returned. The reason for this weirdness is that it allows a fair amount of latitude in
implementations. However, the Linux implementation behaves rationally, i.e., as in the

CS33 Intro to Computer Systems XXXIII–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Condition Variables
when (guard) [
statement 1;
…
statement n;

]

pthread_mutex_lock(&mutex);
while(!guard)
pthread_cond_wait(

&cond_var, &mutex);
statement 1;
…
statement n;
pthread_mutex_unlock(&mutex);

// code modifying the guard:
…

pthread_mutex_lock(&mutex);
// code modifying the guard:
…
pthread_cond_broadcast(

&cond_var);
pthread_mutex_unlock(&mutex);

first two paragraphs. (But don’t depend on this behavior — it could change tomorrow!)

Setting up condition variables is done in a similar fashion as mutexes: The functions
pthread_cond_init and pthread_cond_destroy are supplied to initialize and to destroy
a condition variable. They may also be statically initialized by setting them to
PTHREAD_COND_INITIALIZER in their declarations. As with mutexes and threads,
default attributes may be specified by supplying a zero. The functions
pthread_condattr_init and pthread_condattr_destroy control the initialization and
destruction of their attribute structures.

CS33 Intro to Computer Systems XXXIII–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Set Up

int pthread_cond_init(pthread_cond_t *cvp,
pthread_condattr_t *attrp)

int pthread_cond_destroy(pthread_cond_t *cvp)

int pthread_condattr_init(pthread_condattr_t *attrp)

int pthread_condattr_destroy(pthread_condattr_t *attrp)

Here we begin a producer-consumer solution using condition variables and mutexes;
this solution, unlike the previous, allows multiple producers and consumers. We define
a struct buffer to represent a buffer, associated synchronization variables, and other
associated variables. In our example, producers wait for empty slots to become available,
and consumers wait for occupied slots to become available. Waiting producers are
queued on the condition variable more_space and waiting consumers are queued on the
condition variablemore_items.

CS33 Intro to Computer Systems XXXIII–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

PC with Condition Variables (1)

typedef struct buffer {
pthread_mutex_t m;
pthread_cond_t more_space;
pthread_cond_t more_items;
int next_in;
int next_out;
int empty;
char buf[BSIZE];

} buffer_t;

Here we have the remaining code of our solution. A producer, if there is at least one
empty slot, fills the one at location nextin, increments nextin (taking wraparound into
account), calls pthread_cond_signal to notify any waiting consumers that there is now
an occupied slot in the buffer, and releases the mutex. If there are no empty slots in the
buffer, the producer calls pthread_cond_wait to wait for one.

As discussed previously, this call to pthread_cond_wait has a fairly complicated effect: it
releases the mutex given as the second argument and puts its caller to sleep, after
queuing it on the condition variable given as the first argument. At some point in the
future, a consumer should call pthread_cond_signal, with more_space as the
argument.

Note that we’ve used pthread_cond_signal rather than pthread_cond_broadcast. We
can do this here since, if, for example, n threads are waiting within the call to
pthread_cond_wait in the producer, then there must be n calls to consume to release
them all. If we’d used pthread_cond_broadcast instead, the solution would still work,
but would probably be less efficient, since in many cases waiting threads would return
from pthread_cond_wait, discover that the guard is still false, and have to call
pthread_cond_wait again.

If our producer is the first in the queue associated with more_space, it is released from
the queue, but it does not yet return from pthread_cond_wait. Instead, it continues
execution inside that routine, where it effectively makes a call to pthread_mutex_lock to
reacquire the mutex it had when it entered pthread_cond_wait in the first place. Once it
obtains the mutex, it then returns from pthread_cond_wait. Note that when the thread
attempts to reacquire the mutex, other threads might be waiting for the mutex at the
entrance of the producer code. One of these other threads might obtain the mutex first
— thus there is no guarantee that callers of produce are served in FIFO order.

CS33 Intro to Computer Systems XXXIII–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

PC with Condition Variables (2)
void produce(buffer_t *b,

char item) {

pthread_mutex_lock(&b->m);
while (!(b->empty > 0))
pthread_cond_wait(

&b->more_space, &b->m);
b->buf[b->nextin] = item;
if (++(b->nextin) == BSIZE)

b->nextin = 0;
b->empty--;
pthread_cond_signal(

&b->more_items);
pthread_mutex_unlock(&b->m);

}

char consume(buffer_t *b) {
char item;
pthread_mutex_lock(&b->m);
while (!(b->empty < BSIZE))
pthread_cond_wait(

&b->more_items, &b->m);
item = b->buf[b->nextout];
if (++(b->nextout) == BSIZE)

b->nextout = 0;
b->empty++;
pthread_cond_signal(

&b->more_space);
pthread_mutex_unlock(&b->m);
return item;

}

The order in which threads are released from a condition variable’s queue is first-in-
first-out within priority levels. Thus, waiting high-priority threads are released before
waiting low-priority threads; threads of the same priority are released in the order in
which they called pthread_cond_wait.

III-18

Let’s look at another classic synchronization problem — the readers-writers problem.
Here we have some sort of data structure to which any number of threads may have
simultaneous access, as long as they are just reading. But if a thread is to write in the
data structure, it must have exclusive access.

CS33 Intro to Computer Systems XXXIII–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Readers-Writers Problem

Here we again use guarded commands to describe our solution.

CS33 Intro to Computer Systems XXXIII–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Pseudocode

reader() {

when (writers == 0) [
readers++;

]

/* read */

[readers--;]
}

writer() {

when ((writers == 0) &&
(readers == 0)) [

writers++;
]

/* write */

[writers--;]
}

We’ve attached assertions to our pseudocode to help make it clearer that our code is
correct. The use of assertions is a valuable technique (even in real code), particularly for
multithreaded programs.

CS33 Intro to Computer Systems XXXIII–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Pseudocode with Assertions

reader() {
when (writers == 0) [
readers++;

]

assert((writers == 0) &&
(readers > 0));

/* read */

[readers--;]
}

writer() {
when ((writers == 0) &&

(readers == 0)) [
writers++;

]

assert((readers == 0) &&
(writers == 1));

/* write */

[writers--;]
}

Now we convert the pseudocode to real code. We use two condition variables, readersQ
and writersQ, to represent queues of readers and writers waiting for notification that
their respective guards are true.

The writer calls pthread_cond_signal on writersQ so that it wakes up at most one
writer, but calls pthread_cond_broadcast on readersQ to wake up all the readers.

CS33 Intro to Computer Systems XXXIII–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Solution with POSIX Threads
reader() {
pthread_mutex_lock(&m);
while (!(writers == 0))
pthread_cond_wait(

&readersQ, &m);
readers++;
pthread_mutex_unlock(&m);
/* read */
pthread_mutex_lock(&m);
if (--readers == 0)
pthread_cond_signal(

&writersQ);
pthread_mutex_unlock(&m);

}

writer() {
pthread_mutex_lock(&m);
while(!((readers == 0) &&

(writers == 0)))
pthread_cond_wait(

&writersQ, &m);
writers++;
pthread_mutex_unlock(&m);
/* write */
pthread_mutex_lock(&m);
writers--;
pthread_cond_signal(

&writersQ);
pthread_cond_broadcast(

&readersQ);
pthread_mutex_unlock(&m);

}

Well behaved threads always unlock the locks they lock.

CS33 Intro to Computer Systems XXXIII–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

If a thread calls writer, will it eventually return
from writer (assuming well behaved threads)?

a) yes, always
b) it will usually return, but it’s possible that it will

not return
c) it might return, but it’s highly likely that it will

never return
d) no, never

It turns out that our solution to the readers-writers problem has a flaw: writers may
have to wait indefinitely before being allowed to write. This is because as long as there is
a reader reading, further readers are allowed in, and writers are prevented from writing.

Though one might argue that the best solution is one that is fair to both readers and
writers, what is usually preferred is one that favors writers — i.e., readers requesting
permission to read must yield to writers, but writers do not yield to readers.

This slide gives pseudocode using guarded commands for a new solution to the problem,
a writers-priority solution. Writers indicate their intention to write by incrementing
writers. We use the variable active_writers to indicate how many writers are currently
writing.

CS33 Intro to Computer Systems XXXIII–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

New Pseudocode

reader() {

when (writers == 0) [
readers++;

]

/* read */

[readers--;]
}

writer() {

[writers++;]
when ((readers == 0) &&

(active_writers == 0)) [
active_writers++;

]

/* write */

[writers--;
active_writers--;]

}

In this slide we’ve taken the pseudocode for the writers-priority reader and translated it
into legal POSIX.

CS33 Intro to Computer Systems XXXIII–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Improved Reader

reader() {
pthread_mutex_lock(&m);

while (!(writers == 0)) {
pthread_cond_wait(

&readersQ, &m);
}
readers++;

pthread_mutex_unlock(&m);

/* read */

pthread_mutex_lock(&m);

if (--readers == 0)
pthread_cond_signal(

&writersQ);

pthread_mutex_unlock(&m);
}

Here’s the POSIX version of the writer code. Note the use of pthread_cond_broadcast:
we use it to ensure that all currently waiting readers are released.

CS33 Intro to Computer Systems XXXIII–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Improved Writer

writer() {
pthread_mutex_lock(&m);

writers++;
while (!((readers == 0) &&

(active_writers == 0))) {
pthread_cond_wait(

&writersQ, &m);
}
active_writers++;

pthread_mutex_unlock(&m);

/* write */

pthread_mutex_lock(&m);

writers--;
active_writers--;

if (writers)
pthread_cond_signal(

&writersQ);
else
pthread_cond_broadcast(

&readersQ);

pthread_mutex_unlock(&m);
}

CS33 Intro to Computer Systems XXXIII–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 3

If a thread calls reader, will it eventually return
from reader (assuming well behaved threads)?

a) yes, always
b) it will usually return, but it’s possible that it will

not return
c) it might return, but it’s highly likely that it will

never return
d) no, never

With POSIX 1003.1j support for readers-writers locks was finally introduced. The almost
complete API is shown in the slide (what’s missing are the operations on attributes). As
might be expected, readers-writers locks can be statically initialized with the constant
PTHREAD_RWLOCK_INITIALIZER. The “timedrwlock” routines allow one to wait until the
lock is available or a time-limit is exceeded, whichever comes first.

CS33 Intro to Computer Systems XXXIII–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

New, From POSIX!

int pthread_rwlock_init(pthread_rwlock_t *lock,
pthread_rwlockattr_t *att);

int pthread_rwlock_destroy(pthread_rwlock_t *lock);

int pthread_rwlock_rdlock(pthread_rwlock_t *lock);
int pthread_rwlock_wrlock(pthread_rwlock_t *lock);

int pthread_rwlock_tryrdlock(pthread_rwlock_t *lock);

int pthread_rwlock_trywrlock(pthread_rwlock_t *lock);
int pthread_timedrwlock_rdlock(pthread_rwlock_t *lock,

struct timespec *ts);
int pthread_timedrwlock_wrlock(pthread_rwlock_t *lock,

struct timespec *ts);
int pthread_rwlock_unlock(pthread_rwlock_t *lock);

CS33 Intro to Computer Systems XXXIII–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 4

• Missing in the rwlock API is a function to
“upgrade” a readers lock into a writers lock.
It’s not included because
a) it’s rarely needed, so there’s no point to

including it
b) the same effect could be achieved by

unlocking the readers lock, then taking a
writers lock

c) using such a function would likely result
in deadlock

In this sequence of slides, we look at how we might take a simple (unbalanced) binary
search tree and add readers-writers locks to it so that multiple threads can manipulate
it concurrently. Each node of the tree consists of a pointer to a left child, a pointer to a
right child, and a key (an integer value). For each node, all nodes in its left subtree have
keys that are less than that of the node; all nodes in its right subtree have keys that are
greater than that of the node. There are no duplicate keys. All keys are non-negative
except for the special head node, which is present even for an empty tree, whose key has
a value of -1.

CS33 Intro to Computer Systems XXXIII–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree

-1

6

4 9

1 5 8 11

To add a new node to the tree, say one whose key will be 7, we start at the head and
trace our way down the tree, comparing the new key with the keys of tree nodes,
following left or right child pointers as appropriate. A new node is always inserted as a
leaf.

CS33 Intro to Computer Systems XXXIII–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Insertion

-1

6

4 9

1 5 8 11

7

7

Deleting a leaf node is easy — it’s simply removed and the child pointer from its parent
is set to null.

CS33 Intro to Computer Systems XXXIII–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Deletion of
Leaf

-1

6

4 9

1 5 8 11

7

CS33 Intro to Computer Systems XXXIII–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Deletion of
Leaf

-1

6

4 9

1 5 8

7

Deleting an interior node that has just one child is almost as easy. The child pointer
from its parent is changed to point to the node’s child, and then the node is deleted.

CS33 Intro to Computer Systems XXXIII–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Deletion of
Node with One Child

-1

6

4 9

1 5

7

8

CS33 Intro to Computer Systems XXXIII–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Deletion of
Node with One Child

-1

6

4 9

1 5

7

Deleting a node that has two children might seem tough, but it’s actually relatively easy.
Consider deleting the node, X, whose value is 6. All nodes in its right subtree have
values greater than its value; all nodes in its left subtree have values less than its value.
Suppose we remove the node from the right subtree that has the smallest value (in this
case, node Y, whose value is 7). This node thus also has a greater value than all nodes
in X’s left subtree. Thus, if we replace the value of node X with Y’s value, we end up with
a valid binary search tree.

CS33 Intro to Computer Systems XXXIII–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Deletion of
Node with Two Children

-1

6

4 9

1 5 8

7

X:

Y:

Thus, effectively we’ve reduced the problem of deleting a node with two children to
deleting a node with at most one child.

CS33 Intro to Computer Systems XXXIII–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Deletion of
Node with Two Children

-1

7

4 9

1 5 8

Y:

Here is the C code for searching our binary search tree, which returns either a pointer to
the node containing the key or null if no such node exists. Note that search assumes
that the key being searched for is not in the parent node. If the parentp argument is not
null, then it points to a location into which the address of the returned node’s parent is
stored if the key is found, otherwise it returns a pointer to what would be the parent of
the node containing the key if the key were in the tree.

CS33 Intro to Computer Systems XXXIII–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Search

Node *search(int key,
Node *parent, Node **parentp) {

Node *next;
Node *result;
if (key < parent->key) {
if ((next = parent->lchild)

== 0) {
result = 0;

} else {
if (key == next->key) {
result = next;

} else {
result = search(key,

next, parentpp);
return result;

}
}

} else {
if ((next = parent->rchild)

== 0) {
result = 0;

} else {
if (key == next->key) {
result = next;

} else {
result = search(key,

next, parentpp);
return result;

}
}

}
if (parentpp != 0)
*parentpp = parent;

return result;
}

Here’s the C code for adding a node to the binary search tree.

CS33 Intro to Computer Systems XXXIII–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Add

int add(int key) {
Node *parent, *target, *newnode;
if ((target = search(key, &head, &parent)) != 0) {
return 0;

}
newnode = malloc(sizeof(Node));
newnode->key = key;
newnode->lchild = newnode->rchild = 0;
if (name < parent->name)
parent->lchild = newnode;

else
parent->rchild = newnode;

return 1;
}

An easy way to allow multiple threads to manipulate the search tree concurrently is to
employ what’s known as coarse-grained synchronization: we associate a readers-
writers lock with the entire tree. A thread that is just searching the tree for a value
should take a read lock. A thread attempting to modify the tree, either adding or deleting
a node, should take a write lock.

CS33 Intro to Computer Systems XXXIII–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree
with Coarse-Grained Synchronization

-1

6

4 9

1 5 8 11

CS33 Intro to Computer Systems XXXIII–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Add
with Coarse-Grained Synchronization

int add(int key) {
Node *parent, *target, *newnode;
pthread_rwlock_wrlock(&tree_lock);
if ((target = search(key, &head, &parent)) != 0) {
pthread_rwlock_unlock(&tree_lock);
return 0;

}
newnode = malloc(sizeof(Node));
newnode->key = key;
newnode->lchild = newnode->rchild = 0;
if (name < parent->name)
parent->lchild = newnode;

else
parent->rchild = newnode;

pthread_rwlock_unlock(&tree_lock);
return 1;

}

Let’s now look at what’s known as fine-grained synchronization, where we associate a
readers-writers lock with each node of the tree. The idea is that, unlike the case for
coarse-grained synchronization, we can have multiple threads working on different parts
of the tree at once. The first step in making this work is to modify the search algorithm
so as to lock and unlock the nodes’ rw locks appropriately. As a first attempt, we use the
simple algorithm of first locking a node, then determining, based on its key’s value,
which child we go to next, then unlocking the node and repeating with the child.

CS33 Intro to Computer Systems XXXIII–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree
with Fine-Grained Synchronization I

-1

6

4 9

1 5 8 11

CS33 Intro to Computer Systems XXXIII–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree
with Fine-Grained Synchronization II

-1

6

4 9

1 5 8 11

This approach could lead to trouble if after we obtain a pointer to a child and unlock a
node, some other thread deletes the child (and other nodes).

CS33 Intro to Computer Systems XXXIII–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree
with Fine-Grained Synchronization III

-1

4

1 5

?

To avoid such problems, once we get a pointer to a child, we should lock the child’s rw
lock, and then unlock the parent’s rw lock. This prevents other threads from deleting the
child while we are using it.

CS33 Intro to Computer Systems XXXIII–44 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Doing It Right …

-1

6

4 9

1 5 8 11

And here is the fine-grained search function. Note that its last argument indicates
whether it’s called by a thread that’s only searching the tree, or by a thread that intends
to modify the tree. Note also that the routine assumes that the parent node is locked by
the caller (and that the key being searched for is not in the parent node).

If a node containing the key is found, the found node is locked and a pointer to it is
returned. If parentp is non-null, then the final parent node is locked and a pointer to it
is stored in the location pointed to by parentp (the code for this is on the next slide).

CS33 Intro to Computer Systems XXXIII–45 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Fine-Grained Search I

enum locktype {l_read, l_write};

#define lock(lt, lk) ((lt) == l_read)?
pthread_rwlock_rdlock(lk):
pthread_rwlock_wrlock(lk)

Node *search(int key,
Node *parent, Node **parentp,
enum locktype lt) {
// parent is locked on entry
Node *next;
Node *result;

if (key < parent->key) {
if ((next = parent->lchild)

== 0) {
result = 0;

} else {
lock(lt, &next->lock);
if (key == next->key) {
result = next;

} else {
pthread_rwlock_unlock(

&parent->lock);
result = search(key,

next, parentpp, lt);
return result;

}
}

CS33 Intro to Computer Systems XXXIII–46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Fine-Grained Search II

} else {
if ((next = parent->rchild)

== 0) {
result = 0;

} else {
lock(lt, &next->lock);
if (key == next->key) {
result = next;

} else {
pthread_rwlock_unlock(

&parent->lock);
result = search(key,

next, parentpp, lt);
return result;

}
}

}
if (parentpp != 0) {
// parent remains locked
*parentpp = parent;

} else
pthread_rwlock_unlock(

&parent->lock);
return result;

}

CS33 Intro to Computer Systems XXXIII–47 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 5

The search function takes read locks if the
purpose of the search is for a query, but takes
write locks if the purpose is for an add or a
delete. Would it make sense for it always to take
read locks until it reaches the target of the
search, then take a write lock just for that
target?

a) Yes, since doing so allows more
concurrency

b) No, it would work, but there would be no
increase in concurrency

c) No, it would not work

Here is the add routine modified for fine-grained synchronization.

CS33 Intro to Computer Systems XXXIII–48 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Add
with Fine-Grained Synchronization I

int add(int key) {
Node *parent, *target, *newnode;
pthread_rwlock_wrlock(&head->lock);
if ((target = search(key, &head, &parent,

l_write)) != 0) {
pthread_rwlock_unlock(&target->lock);
pthread_rwlock_unlock(&parent->lock);
return 0;

}

CS33 Intro to Computer Systems XXXIII–49 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Add
with Fine-Grained Synchronization II

newnode = malloc(sizeof(Node));
newnode->key = key;
newnode->lchild = newnode->rchild = 0;
pthread_rwlock_init(&newnode->lock, 0);
if (name < parent->name)
parent->lchild = newnode;

else
parent->rchild = newnode;

pthread_rwlock_unlock(&parent->lock);
return 1;

}

CS33 Intro to Computer Systems XXXIII–50 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 6

The add function calls malloc. Could we use the
malloc that you’ll finish by Wednesday for this,
or do we need a different one that’s safe for use
in multithreaded programs?

a) Since the calling thread has a write lock on the
parent of the new node, it’s safe to call the
standard malloc

b) Even if the calling thread didn’t have a write lock
on the parent, it would be safe to call the the
standard malloc

c) We will need a new malloc, one that’s safe for use
in multithreaded programs

