
CS33 Intro to Computer Systems XXXIII–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Multithreaded Programming III

CS33 Intro to Computer Systems XXXIII–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Producer-Consumer Problem

ProducerConsumer

CS33 Intro to Computer Systems XXXIII–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Guarded Commands

when (guard) [
/*

once the guard is true, execute this
code atomically
*/

...

]

CS33 Intro to Computer Systems XXXIII–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Semaphores

• P(S) operation:
when (S > 0) [
S = S – 1;

]

• V(S) operation:
[S = S + 1;]

CS33 Intro to Computer Systems XXXIII–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Producer/Consumer with
Semaphores

Semaphore empty = BSIZE;
Semaphore occupied = 0;
int nextin = 0;
int nextout = 0;

void Produce(char item) {
P(empty);
buf[nextin] = item;
if (++nextin >= BSIZE)

nextin = 0;
V(occupied);

}

char Consume() {
char item;
P(occupied);
item = buf[nextout];
if (++nextout >= BSIZE)

nextout = 0;
V(empty);
return item;

}

CS33 Intro to Computer Systems XXXIII–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

POSIX Semaphores

#include <semaphore.h>

int sem_init(sem_t *semaphore, int pshared, int init);

int sem_destroy(sem_t *semaphore);

int sem_wait(sem_t *semaphore);

/* P operation */

int sem_trywait(sem_t *semaphore);

/* conditional P operation */

int sem_post(sem_t *semaphore);

/* V operation */

CS33 Intro to Computer Systems XXXIII–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Producer-Consumer with POSIX
Semaphores

void produce(char item) {

sem_wait(&empty);
buf[nextin] = item;
if (++nextin >= BSIZE)
nextin = 0;

sem_post(&occupied);
}

char consume() {
char item;
sem_wait(&occupied);
item = buf[nextout];
if (++nextout >= BSIZE)
nextout = 0;

sem_post(&empty);
return item;

}

sem_init(&empty, 0, BSIZE);
sem_init(&occupied, 0, 0);
int nextin = 0;
int nextout = 0;

CS33 Intro to Computer Systems XXXIII–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

Does the POSIX version of the producer-
consumer solution work with multiple
producers and consumers?

a) Yes
b) No, but it can be made to work by using

mutexes to make sure that only one thread
is executing the producer code at a time and
only one thread is executing the consumer
code at a time

c) It can’t easily be made to work

CS33 Intro to Computer Systems XXXIII–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Start/Stop

• Start/Stop interface

void wait_for_start(state_t *s);

void start(state_t *s);

void stop(state_t *s);

CS33 Intro to Computer Systems XXXIII–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Start/Stop

• Start/Stop interface

void wait_for_start(state_t *s){

if (s->state == stopped)

sleep();

}

void start(state_t *s) {

state = started;

wakeup_all();

}

void stop(state_t *s) {

state = stopped;

}

CS33 Intro to Computer Systems XXXIII–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){

pthread_mutex_lock(&s->mutex);
if (s->state == stopped) {

pthread_mutex_unlock(&s->mutex);

sleep();
else pthread_mutex_unlock(&s->mutex);

}

void start(state_t *s) {

pthread_mutex_lock(&s->mutex);
state = started;

wakeup_all();

pthread_mutex_unlock(&s->mutex);
}

CS33 Intro to Computer Systems XXXIII–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){

pthread_mutex_lock(&s->mutex);
if (s->state == stopped) {

sleep();

pthread_mutex_unlock(&s->mutex);
}

void start(state_t *s) {

pthread_mutex_lock(&s->mutex);

state = started;
wakeup_all();

pthread_mutex_unlock(&s->mutex);

}

CS33 Intro to Computer Systems XXXIII–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){

pthread_mutex_lock(&s->mutex);
while(s->state == stopped)

pthread_cond_wait(&s->queue, &s->mutex);

pthread_mutex_unlock(&s->mutex);
}

void start(state_t *s) {

pthread_mutex_lock(&s->mutex);

s->state = started;
pthread_cond_broadcast(&s->queue);

pthread_mutex_unlock(&s->mutex);

}

CS33 Intro to Computer Systems XXXIII–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Condition Variables
when (guard) [

statement 1;
…
statement n;

]

pthread_mutex_lock(&mutex);
while(!guard)

pthread_cond_wait(
&cond_var, &mutex);

statement 1;
…
statement n;
pthread_mutex_unlock(&mutex);

// code modifying the guard:
…

pthread_mutex_lock(&mutex);
// code modifying the guard:
…
pthread_cond_broadcast(

&cond_var);
pthread_mutex_unlock(&mutex);

CS33 Intro to Computer Systems XXXIII–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Set Up

int pthread_cond_init(pthread_cond_t *cvp,
pthread_condattr_t *attrp)

int pthread_cond_destroy(pthread_cond_t *cvp)

int pthread_condattr_init(pthread_condattr_t *attrp)

int pthread_condattr_destroy(pthread_condattr_t *attrp)

CS33 Intro to Computer Systems XXXIII–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

PC with Condition Variables (1)

typedef struct buffer {
pthread_mutex_t m;
pthread_cond_t more_space;
pthread_cond_t more_items;
int next_in;
int next_out;
int empty;
char buf[BSIZE];

} buffer_t;

CS33 Intro to Computer Systems XXXIII–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

PC with Condition Variables (2)
void produce(buffer_t *b,

char item) {

pthread_mutex_lock(&b->m);
while (!(b->empty > 0))
pthread_cond_wait(

&b->more_space, &b->m);
b->buf[b->nextin] = item;
if (++(b->nextin) == BSIZE)

b->nextin = 0;
b->empty--;
pthread_cond_signal(

&b->more_items);
pthread_mutex_unlock(&b->m);

}

char consume(buffer_t *b) {
char item;
pthread_mutex_lock(&b->m);
while (!(b->empty < BSIZE))
pthread_cond_wait(

&b->more_items, &b->m);
item = b->buf[b->nextout];
if (++(b->nextout) == BSIZE)

b->nextout = 0;
b->empty++;
pthread_cond_signal(

&b->more_space);
pthread_mutex_unlock(&b->m);
return item;

}

CS33 Intro to Computer Systems XXXIII–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Readers-Writers Problem

CS33 Intro to Computer Systems XXXIII–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Pseudocode

reader() {

when (writers == 0) [

readers++;

]

/* read */

[readers--;]

}

writer() {

when ((writers == 0) &&

(readers == 0)) [

writers++;

]

/* write */

[writers--;]

}

CS33 Intro to Computer Systems XXXIII–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Pseudocode with Assertions

reader() {
when (writers == 0) [
readers++;

]

assert((writers == 0) &&
(readers > 0));

/* read */

[readers--;]
}

writer() {
when ((writers == 0) &&

(readers == 0)) [
writers++;

]

assert((readers == 0) &&
(writers == 1));

/* write */

[writers--;]
}

CS33 Intro to Computer Systems XXXIII–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Solution with POSIX Threads
reader() {

pthread_mutex_lock(&m);
while (!(writers == 0))

pthread_cond_wait(
&readersQ, &m);

readers++;
pthread_mutex_unlock(&m);
/* read */
pthread_mutex_lock(&m);
if (--readers == 0)

pthread_cond_signal(
&writersQ);

pthread_mutex_unlock(&m);
}

writer() {
pthread_mutex_lock(&m);
while(!((readers == 0) &&

(writers == 0)))
pthread_cond_wait(

&writersQ, &m);
writers++;
pthread_mutex_unlock(&m);
/* write */
pthread_mutex_lock(&m);
writers--;
pthread_cond_signal(

&writersQ);
pthread_cond_broadcast(

&readersQ);
pthread_mutex_unlock(&m);

}

CS33 Intro to Computer Systems XXXIII–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

If a thread calls writer, will it eventually return
from writer (assuming well behaved threads)?

a) yes, always
b) it will usually return, but it’s possible that it will

not return
c) it might return, but it’s highly likely that it will

never return
d) no, never

CS33 Intro to Computer Systems XXXIII–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

New Pseudocode

reader() {

when (writers == 0) [

readers++;

]

/* read */

[readers--;]

}

writer() {

[writers++;]

when ((readers == 0) &&

(active_writers == 0)) [

active_writers++;

]

/* write */

[writers--;
active_writers--;]

}

CS33 Intro to Computer Systems XXXIII–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Improved Reader

reader() {
pthread_mutex_lock(&m);

while (!(writers == 0)) {
pthread_cond_wait(

&readersQ, &m);
}
readers++;

pthread_mutex_unlock(&m);

/* read */

pthread_mutex_lock(&m);

if (--readers == 0)
pthread_cond_signal(

&writersQ);

pthread_mutex_unlock(&m);
}

CS33 Intro to Computer Systems XXXIII–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Improved Writer

writer() {
pthread_mutex_lock(&m);

writers++;
while (!((readers == 0) &&

(active_writers == 0))) {
pthread_cond_wait(

&writersQ, &m);
}
active_writers++;

pthread_mutex_unlock(&m);

/* write */

pthread_mutex_lock(&m);

writers--;
active_writers--;

if (writers)
pthread_cond_signal(

&writersQ);
else
pthread_cond_broadcast(

&readersQ);

pthread_mutex_unlock(&m);
}

CS33 Intro to Computer Systems XXXIII–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 3

If a thread calls reader, will it eventually return
from reader (assuming well behaved threads)?

a) yes, always
b) it will usually return, but it’s possible that it will

not return
c) it might return, but it’s highly likely that it will

never return
d) no, never

CS33 Intro to Computer Systems XXXIII–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

New, From POSIX!

int pthread_rwlock_init(pthread_rwlock_t *lock,
pthread_rwlockattr_t *att);

int pthread_rwlock_destroy(pthread_rwlock_t *lock);

int pthread_rwlock_rdlock(pthread_rwlock_t *lock);

int pthread_rwlock_wrlock(pthread_rwlock_t *lock);

int pthread_rwlock_tryrdlock(pthread_rwlock_t *lock);

int pthread_rwlock_trywrlock(pthread_rwlock_t *lock);

int pthread_timedrwlock_rdlock(pthread_rwlock_t *lock,
struct timespec *ts);

int pthread_timedrwlock_wrlock(pthread_rwlock_t *lock,
struct timespec *ts);

int pthread_rwlock_unlock(pthread_rwlock_t *lock);

CS33 Intro to Computer Systems XXXIII–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 4

• Missing in the rwlock API is a function to
“upgrade” a readers lock into a writers lock.
It’s not included because
a) it’s rarely needed, so there’s no point to

including it
b) the same effect could be achieved by

unlocking the readers lock, then taking a
writers lock

c) using such a function would likely result
in deadlock

CS33 Intro to Computer Systems XXXIII–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree

-1

6

4 9

1 5 8 11

CS33 Intro to Computer Systems XXXIII–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Insertion

-1

6

4 9

1 5 8 11

7

7

CS33 Intro to Computer Systems XXXIII–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Deletion of
Leaf

-1

6

4 9

1 5 8 11

7

CS33 Intro to Computer Systems XXXIII–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Deletion of
Leaf

-1

6

4 9

1 5 8

7

CS33 Intro to Computer Systems XXXIII–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Deletion of
Node with One Child

-1

6

4 9

1 5

7

8

CS33 Intro to Computer Systems XXXIII–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Deletion of
Node with One Child

-1

6

4 9

1 5

7

CS33 Intro to Computer Systems XXXIII–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Deletion of
Node with Two Children

-1

6

4 9

1 5 8

7

X:

Y:

CS33 Intro to Computer Systems XXXIII–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Deletion of
Node with Two Children

-1

7

4 9

1 5 8

Y:

CS33 Intro to Computer Systems XXXIII–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Search

Node *search(int key,
Node *parent, Node **parentp) {

Node *next;
Node *result;
if (key < parent->key) {

if ((next = parent->lchild)
== 0) {

result = 0;
} else {

if (key == next->key) {
result = next;

} else {
result = search(key,

next, parentpp);
return result;

}
}

} else {
if ((next = parent->rchild)

== 0) {
result = 0;

} else {
if (key == next->key) {

result = next;
} else {

result = search(key,
next, parentpp);

return result;
}

}
}
if (parentpp != 0)

*parentpp = parent;
return result;

}

CS33 Intro to Computer Systems XXXIII–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Add

int add(int key) {
Node *parent, *target, *newnode;
if ((target = search(key, &head, &parent)) != 0) {

return 0;
}
newnode = malloc(sizeof(Node));
newnode->key = key;
newnode->lchild = newnode->rchild = 0;
if (name < parent->name)

parent->lchild = newnode;
else

parent->rchild = newnode;
return 1;

}

CS33 Intro to Computer Systems XXXIII–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree
with Coarse-Grained Synchronization

-1

6

4 9

1 5 8 11

CS33 Intro to Computer Systems XXXIII–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Add
with Coarse-Grained Synchronization

int add(int key) {
Node *parent, *target, *newnode;
pthread_rwlock_wrlock(&tree_lock);
if ((target = search(key, &head, &parent)) != 0) {

pthread_rwlock_unlock(&tree_lock);
return 0;

}
newnode = malloc(sizeof(Node));
newnode->key = key;
newnode->lchild = newnode->rchild = 0;
if (name < parent->name)

parent->lchild = newnode;
else

parent->rchild = newnode;
pthread_rwlock_unlock(&tree_lock);
return 1;

}

CS33 Intro to Computer Systems XXXIII–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree
with Fine-Grained Synchronization I

-1

6

4 9

1 5 8 11

CS33 Intro to Computer Systems XXXIII–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree
with Fine-Grained Synchronization II

-1

6

4 9

1 5 8 11

CS33 Intro to Computer Systems XXXIII–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree
with Fine-Grained Synchronization III

-1

4

1 5

?

CS33 Intro to Computer Systems XXXIII–44 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Doing It Right …

-1

6

4 9

1 5 8 11

CS33 Intro to Computer Systems XXXIII–45 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Fine-Grained Search I

enum locktype {l_read, l_write};

#define lock(lt, lk) ((lt) == l_read)?
pthread_rwlock_rdlock(lk):

pthread_rwlock_wrlock(lk)

Node *search(int key,

Node *parent, Node **parentp,

enum locktype lt) {
// parent is locked on entry

Node *next;

Node *result;
if (key < parent->key) {

if ((next = parent->lchild)

== 0) {
result = 0;

} else {
lock(lt, &next->lock);

if (key == next->key) {
result = next;

} else {

pthread_rwlock_unlock(
&parent->lock);

result = search(key,

next, parentpp, lt);
return result;

}

}

CS33 Intro to Computer Systems XXXIII–46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Fine-Grained Search II

} else {
if ((next = parent->rchild)

== 0) {
result = 0;

} else {
lock(lt, &next->lock);
if (key == next->key) {

result = next;

} else {
pthread_rwlock_unlock(

&parent->lock);
result = search(key,

next, parentpp, lt);
return result;

}
}

}
if (parentpp != 0) {

// parent remains locked
*parentpp = parent;

} else
pthread_rwlock_unlock(

&parent->lock);
return result;

}

CS33 Intro to Computer Systems XXXIII–47 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 5

The search function takes read locks if the
purpose of the search is for a query, but takes
write locks if the purpose is for an add or a
delete. Would it make sense for it always to take
read locks until it reaches the target of the
search, then take a write lock just for that
target?

a) Yes, since doing so allows more
concurrency

b) No, it would work, but there would be no
increase in concurrency

c) No, it would not work

CS33 Intro to Computer Systems XXXIII–48 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Add
with Fine-Grained Synchronization I

int add(int key) {
Node *parent, *target, *newnode;
pthread_rwlock_wrlock(&head->lock);
if ((target = search(key, &head, &parent,

l_write)) != 0) {
pthread_rwlock_unlock(&target->lock);
pthread_rwlock_unlock(&parent->lock);
return 0;

}

CS33 Intro to Computer Systems XXXIII–49 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Add
with Fine-Grained Synchronization II

newnode = malloc(sizeof(Node));
newnode->key = key;
newnode->lchild = newnode->rchild = 0;
pthread_rwlock_init(&newnode->lock, 0);
if (name < parent->name)

parent->lchild = newnode;
else

parent->rchild = newnode;
pthread_rwlock_unlock(&parent->lock);
return 1;

}

CS33 Intro to Computer Systems XXXIII–50 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 6

The add function calls malloc. Could we use the
malloc that you’ll finish by Wednesday for this,
or do we need a different one that’s safe for use
in multithreaded programs?

a) Since the calling thread has a write lock on the
parent of the new node, it’s safe to call the
standard malloc

b) Even if the calling thread didn’t have a write lock
on the parent, it would be safe to call the the
standard malloc

c) We will need a new malloc, one that’s safe for use
in multithreaded programs

