
CS33 Intro to Computer Systems XXXIV–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Multithreaded Programming IV

CS33 Intro to Computer Systems XXXIV–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree

-1

6

4 9

1 5 8 11

CS33 Intro to Computer Systems XXXIV–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Insertion

-1

6

4 9

1 5 8 11

7

7

CS33 Intro to Computer Systems XXXIV–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Deletion of
Leaf

-1

6

4 9

1 5 8 11

7

CS33 Intro to Computer Systems XXXIV–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Deletion of
Leaf

-1

6

4 9

1 5 8

7

CS33 Intro to Computer Systems XXXIV–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Deletion of
Node with One Child

-1

6

4 9

1 5

7

8

CS33 Intro to Computer Systems XXXIV–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Deletion of
Node with One Child

-1

6

4 9

1 5

7

CS33 Intro to Computer Systems XXXIV–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Deletion of
Node with Two Children

-1

6

4 9

1 5 8

7

X:

Y:

CS33 Intro to Computer Systems XXXIV–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree: Deletion of
Node with Two Children

-1

7

4 9

1 5 8

Y:

CS33 Intro to Computer Systems XXXIV–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Search

Node *search(int key,
Node *parent, Node **parentp) {

Node *next;
Node *result;
if (key < parent->key) {

if ((next = parent->lchild)
== 0) {

result = 0;
} else {

if (key == next->key) {
result = next;

} else {
result = search(key,

next, parentpp);
return result;

}
}

} else {
if ((next = parent->rchild)

== 0) {
result = 0;

} else {
if (key == next->key) {

result = next;
} else {

result = search(key,
next, parentpp);

return result;
}

}
}
if (parentpp != 0)

*parentpp = parent;
return result;

}

CS33 Intro to Computer Systems XXXIV–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Add

int add(int key) {
Node *parent, *target, *newnode;
if ((target = search(key, &head, &parent)) != 0) {

return 0;
}
newnode = malloc(sizeof(Node));
newnode->key = key;
newnode->lchild = newnode->rchild = 0;
if (name < parent->name)

parent->lchild = newnode;
else

parent->rchild = newnode;
return 1;

}

CS33 Intro to Computer Systems XXXIV–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree
with Coarse-Grained Synchronization

-1

6

4 9

1 5 8 11

CS33 Intro to Computer Systems XXXIV–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Add
with Coarse-Grained Synchronization

int add(int key) {
Node *parent, *target, *newnode;
pthread_rwlock_wrlock(&tree_lock);
if ((target = search(key, &head, &parent)) != 0) {

pthread_rwlock_unlock(&tree_lock);
return 0;

}
newnode = malloc(sizeof(Node));
newnode->key = key;
newnode->lchild = newnode->rchild = 0;
if (name < parent->name)

parent->lchild = newnode;
else

parent->rchild = newnode;
pthread_rwlock_unlock(&tree_lock);
return 1;

}

CS33 Intro to Computer Systems XXXIV–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree
with Fine-Grained Synchronization I

-1

6

4 9

1 5 8 11

CS33 Intro to Computer Systems XXXIV–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree
with Fine-Grained Synchronization II

-1

6

4 9

1 5 8 11

CS33 Intro to Computer Systems XXXIV–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Binary Search Tree
with Fine-Grained Synchronization III

-1

4

1 5

?

CS33 Intro to Computer Systems XXXIV–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Doing It Right …

-1

6

4 9

1 5 8 11

CS33 Intro to Computer Systems XXXIV–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Fine-Grained Search I

enum locktype {l_read, l_write};

#define lock(lt, lk) ((lt) == l_read)?
pthread_rwlock_rdlock(lk):

pthread_rwlock_wrlock(lk)

Node *search(int key,

Node *parent, Node **parentp,

enum locktype lt) {
// parent is locked on entry

Node *next;

Node *result;
if (key < parent->key) {

if ((next = parent->lchild)

== 0) {
result = 0;

} else {
lock(lt, &next->lock);

if (key == next->key) {
result = next;

} else {

pthread_rwlock_unlock(
&parent->lock);

result = search(key,

next, parentpp, lt);
return result;

}

}

CS33 Intro to Computer Systems XXXIV–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Fine-Grained Search II

} else {
if ((next = parent->rchild)

== 0) {
result = 0;

} else {
lock(lt, &next->lock);
if (key == next->key) {

result = next;

} else {
pthread_rwlock_unlock(

&parent->lock);
result = search(key,

next, parentpp, lt);
return result;

}
}

}
if (parentpp != 0) {

// parent remains locked
*parentpp = parent;

} else
pthread_rwlock_unlock(

&parent->lock);
return result;

}

CS33 Intro to Computer Systems XXXIV–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

The search function takes read locks if the
purpose of the search is for a query, but takes
write locks if the purpose is for an add or a
delete. Would it make sense for it always to take
read locks until it reaches the target of the
search, then take a write lock just for that
target?

a) Yes, since doing so allows more
concurrency

b) No, it would work, but there would be no
increase in concurrency

c) No, it would not work

CS33 Intro to Computer Systems XXXIV–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Add
with Fine-Grained Synchronization I

int add(int key) {
Node *parent, *target, *newnode;
pthread_rwlock_wrlock(&head->lock);
if ((target = search(key, &head, &parent,

l_write)) != 0) {
pthread_rwlock_unlock(&target->lock);
pthread_rwlock_unlock(&parent->lock);
return 0;

}

CS33 Intro to Computer Systems XXXIV–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

C Code: Add
with Fine-Grained Synchronization II

newnode = malloc(sizeof(Node));
newnode->key = key;
newnode->lchild = newnode->rchild = 0;
pthread_rwlock_init(&newnode->lock, 0);
if (name < parent->name)

parent->lchild = newnode;
else

parent->rchild = newnode;
pthread_rwlock_unlock(&parent->lock);
return 1;

}

CS33 Intro to Computer Systems XXXIV–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

The add function calls malloc. Could we use for
this the malloc that you’ll finish by midnight, or
do we need a different one that’s safe for use in
multithreaded programs?

a) Since the calling thread has a write lock on the
parent of the new node, it’s safe to call the
standard malloc

b) Even if the calling thread didn’t have a write lock
on the parent, it would be safe to call the standard
malloc

c) We need a new malloc, one that’s safe for use in
multithreaded programs

CS33 Intro to Computer Systems XXXIV–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Barriers

CS33 Intro to Computer Systems XXXIV–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

A Solution?

pthread_mutex_lock(&m);
if (++count == number) {
pthread_cond_broadcast(&cond_var);

} else while (!(count == number)) {
pthread_cond_wait(&cond_var, &m);

}
pthread_mutex_unlock(&m);

CS33 Intro to Computer Systems XXXIV–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

How About This?

pthread_mutex_lock(&m);
if (++count == number) {
pthread_cond_broadcast(&cond_var);
count = 0;

} else while (!(count == number)) {

pthread_cond_wait(&cond_var, &m);
}
pthread_mutex_unlock(&m);

CS33 Intro to Computer Systems XXXIV–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

And This ...

pthread_mutex_lock(&m);
if (++count == number) {
pthread_cond_broadcast(&cond_var);
count = 0;

} else {
pthread_cond_wait(&cond_var, &m);

}
pthread_mutex_unlock(&m);

Quiz 3
Does it work?

a) definitely
b) probably
c) rarely
d) never

CS33 Intro to Computer Systems XXXIV–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Barrier in POSIX Threads

pthread_mutex_lock(&m);
if (++count < number) {
int my_generation = generation;
while(my_generation == generation) {
pthread_cond_wait(&waitQ, &m);

}
} else {
count = 0;
generation++;
pthread_cond_broadcast(&waitQ);

}
pthread_mutex_unlock(&m);

CS33 Intro to Computer Systems XXXIV–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

More From POSIX!

int pthread_barrier_init(pthread_barrier_t *barrier,

pthread_barrierattr_t *attr,

unsigned int count);

int pthread_barrier_destroy(

pthread_barrier_t *barrier);

int pthread_barrier_wait(

pthread_barrier_t *barrier);

CS33 Intro to Computer Systems XXXIV–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Why cond_wait is Weird …

pthread_cond_wait(pthread_cond_t *c, pthread_mutex_t *m) {

pthread_mutex_unlock(m);

sem_wait(c->sem);
pthread_mutex_lock(m);

}

pthread_cond_signal(pthread_cond_t *c) {
sem_post(c->sem);

}

CS33 Intro to Computer Systems XXXIV–31 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Deviations

• Signals

• Cancellation
– tamed lightning

vs.

CS33 Intro to Computer Systems XXXIV–32 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signals

•

– who gets them?
– who needs them?

•

– how do you respond to them?

CS33 Intro to Computer Systems XXXIV–33 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Dealing with Signals

• Per-thread signal masks
• Per-process signal vectors
• One delivery per signal

CS33 Intro to Computer Systems XXXIV–34 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Signals and Threads

int pthread_kill(pthread_t thread, int signo);

– thread equivalent of kill

int pthread_sigmask(int how,
const sigset_t *newmask,
sigset_t oldmask);

– thread equivalent of sigprocmask

CS33 Intro to Computer Systems XXXIV–35 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (1)

int main() {
void handler(int);
signal(SIGINT, handler);

...

}

void handler(int sig) {

...
}

CS33 Intro to Computer Systems XXXIV–36 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Asynchronous Signals (2)

int main() {
void handler(int);

signal(SIGINT, handler);

... // complicated program

printf("important message: "
"%s\n", message);

... // more program

}

void handler(int sig) {

... // deal with signal

printf("equally important "
"message: %s\n", message);

}

CS33 Intro to Computer Systems XXXIV–37 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 4

int main() {
void handler(int);

signal(SIGINT, handler);

... // complicated program

pthread_mutex_lock(&mut);
printf("important message: "

"%s\n", message);
pthread_mutex_unlock(&mut);

... // more program

}

void handler(int sig) {

... // deal with signal

pthread_mutex_lock(&mut);
printf("equally important "

"message: %s\n", message);
pthread_mutex_unlock(&mut);

}

Does this work?
a) always
b) sometimes
c) never

CS33 Intro to Computer Systems XXXIV–38 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Synchronizing Asynchrony

computation_state_t state;
sigset_t set;

int main() {
pthread_t thread;

sigemptyset(&set);
sigaddset(&set, SIGINT);
pthread_sigmask(SIG_BLOCK,
&set, 0);

pthread_create(&thread, 0,
monitor, 0);

long_running_procedure();
}

void *monitor(void *dummy) {
int sig;
while (1) {
sigwait(&set, &sig);
display(&state);

}
return(0);

}

CS33 Intro to Computer Systems XXXIV–39 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Cancellation

CS33 Intro to Computer Systems XXXIV–40 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Sample Code

void *thread_code(void *arg) {

node_t *head = 0;

while (1) {
node_t *nodep;

nodep = (node_t *)malloc(sizeof(node_t));
nodep->next = head;

head = nodep;
if (read(0, &node->value,

sizeof(node->value)) == 0) {
free(nodep);
break;

}

}

return head;
}

pthread_cancel(thread);

CS33 Intro to Computer Systems XXXIV–41 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Cancellation Concerns

• Getting cancelled at an inopportune moment
• Cleaning up

CS33 Intro to Computer Systems XXXIV–42 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Cancellation State

• Pending cancel
– pthread_cancel(thread)

• Cancels enabled or disabled
– int pthread_setcancelstate(

{PTHREAD_CANCEL_DISABLE
PTHREAD_CANCEL_ENABLE},
&oldstate)

• Asynchronous vs. deferred cancels
– int pthread_setcanceltype(

{PTHREAD_CANCEL_ASYNCHRONOUS,
PTHREAD_CANCEL_DEFERRED},
&oldtype)

CS33 Intro to Computer Systems XXXIV–43 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Cancellation Points

• aio_suspend
• close
• creat
• fcntl (when F_SETLCKW is

the command)
• fsync
• mq_receive
• mq_send
• msync
• nanosleep
• open
• pause
• pthread_cond_wait
• pthread_cond_timedwait
• pthread_join

• pthread_testcancel
• read
• sem_wait
• sigwait
• sigwaitinfo
• sigsuspend
• sigtimedwait
• sleep
• system
• tcdrain
• wait
• waitpid
• write

CS33 Intro to Computer Systems XXXIV–44 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Cleaning Up

• void pthread_cleanup_push((void)(*routine)(void *),
void *arg)

• void pthread_cleanup_pop(int execute)

CS33 Intro to Computer Systems XXXIV–45 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Sample Code, Revisited
void *thread_code(void *arg) {

node_t *head = 0;

pthread_cleanup_push(
cleanup, &head);

while (1) {

node_t *nodep;
nodep = (node_t *)

malloc(sizeof(node_t));
nodep->next = head;
head = nodep;

if (read(0, &nodep->value,

sizeof(nodep->value)) == 0) {
free(nodep);

break;

}
}

pthread_cleanup_pop(0);
return head;

}

void cleanup(void *arg) {
node_t **headp = arg;

while(*headp) {
node_t *nodep = head->next;

free(*headp);

*headp = nodep;
}

}

CS33 Intro to Computer Systems XXXIV–46 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

A More Complicated Situation …

-1

6

4 9

1 5 8 11

CS33 Intro to Computer Systems XXXIV–47 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){

pthread_mutex_lock(&s->mutex);
while(s->state == stopped)

pthread_cond_wait(&s->queue, &s->mutex);

pthread_mutex_unlock(&s->mutex);
}

void start(state_t *s) {

pthread_mutex_lock(&s->mutex);

s->state = started;
pthread_cond_broadcast(&s->queue);

pthread_mutex_unlock(&s->mutex);

}

CS33 Intro to Computer Systems XXXIV–48 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){

pthread_mutex_lock(&s->mutex);
while(s->state == stopped)

pthread_cond_wait(&s->queue,
&s->mutex);

pthread_mutex_unlock(&s->mutex);
}

void start(state_t *s) {

pthread_mutex_lock(&s->mutex);
s->state = started;

pthread_cond_broadcast(&s->queue);

pthread_mutex_unlock(&s->mutex);

}

Not a Quiz

You’re in charge of
designing POSIX threads.
Should pthread_cond_wait
be a cancellation point?

a) no
b) yes; cancelled

threads must
acquire mutex
before invoking
cleanup handler

c) yes; but they don’t
acquire mutex

CS33 Intro to Computer Systems XXXIV–49 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Cancellation and Conditions

pthread_mutex_lock(&m);
pthread_cleanup_push(cleanup_handler, &m);
while(should_wait)
pthread_cond_wait(&cv, &m);

read(0, buffer, len); // read is a cancellation point

pthread_cleanup_pop(1);

CS33 Intro to Computer Systems XXXIV–50 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Start/Stop
• Start/Stop interface

void wait_for_start(state_t *s){
pthread_mutex_lock(&s->mutex);
pthread_cleanup_push(

pthread_mutex_unlock, &s);

while(s->state == stopped)
pthread_cond_wait(&s->queue, &s->mutex);

pthread_cleanup_pop(1);

}

void start(state_t *s) {
pthread_mutex_lock(&s->mutex);

s->state = started;

pthread_cond_broadcast(&s->queue);

pthread_mutex_unlock(&s->mutex);
}

