
CS33 Intro to Computer Systems XXXVII–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Multithreaded Programming VII

CS33 Intro to Computer Systems XXXVII–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Implementing Mutexes

• Strategy
– make the usual case (no waiting) very fast
– can afford to take more time for the other case

(waiting for the mutex)

For details on futexes, avoid the Linux man pages, but look at
http://people.redhat.com/drepper/futex.pdf, from which this material was obtained.
Note that there’s actually just one futex system call; whether it’s a wait or a wakeup is
specified by an argument.

CS33 Intro to Computer Systems XXXVII–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Futexes

• Safe, efficient kernel conditional queueing in Linux
• All operations performed atomically

– futex_wait(futex_t *futex, int val)
» if futex->val is equal to val, then sleep
» otherwise return

– futex_wake(futex_t *futex)
» wake up one thread from futex’s wait queue, if there are

any waiting threads

These functions are available on most architectures, particularly on the x86. Note that
their effect must be atomic: everything happens at once.

How can these instructions be made to be atomic? What’s done is memory is accessed
via special instructions that cause the memory controller to respond to a load then a
store without anything happening in between. Thus, for the example of atomic_inc, val
is loaded from memory, then incremented (in the processor), then stored back to
memory. While this happens, no other load or stores may be done. If this were done for
every instruction, memory access would slow down considerably, but doing it just
occasionally has no severe effect.

CS33 Intro to Computer Systems XXXVII–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Ancillary Functions

• int atomic_inc(int *val)
– add 1 to *val, return its original value

• int atomic_dec(int *val)
– subtract 1 from *val, return its original value

• int CAS(int *ptr, int old, int new) {
int tmp = *ptr;
if (*ptr == old)

*ptr = new;
return tmp;

}

If the futex's value is 0, it represents an unlocked mutex. If it’s 1, it represents a
locked mutex.

CS33 Intro to Computer Systems XXXVII–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Attempt 1

void lock(futex_t *futex) {

int c;
while ((c = atomic_inc(&futex->val)) != 0)
futex_wait(futex, c+1);

}

void unlock(futex_t *futex) {
futex->val = 0;
futex_wake(futex);

}

CS33 Intro to Computer Systems XXXVII–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

void lock(futex_t *futex) {

int c;
while ((c = atomic_inc(&futex->val)) != 0)
futex_wait(futex, c+1);

}

void unlock(futex_t *futex) {
futex->val = 0;
futex_wake(futex);

}

Which of the following won’t happen
if the futex’s value is zero and three
threads call lock at the same time?
a) one might return immediately, but

at least two will call futex_wait.
b) even though unlock is called

appropriately, one thread will
never return from futex_wait.

c) threads might return from
futex_wait immediately, because
the futex’s value is not equal to
c+1.

In this version, if the futex's value is 0, it represents an unlocked mutex; if it's one it
represents a locked mutex that has no threads are waiting for it; if it's greater than one
it represents a locked mutex that might have threads waiting for it.

CS33 Intro to Computer Systems XXXVII–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Attempt 2
void lock(futex_t *futex) {
int c;
if ((c = CAS(&futex->val, 0, 1) != 0)
do {
if (c == 2 || (CAS(&futex->val, 1, 2) != 0))
futex_wait(futex, 2);

while ((c = CAS(&futex->val, 0, 2)) != 0))
}

void unlock(futex_t *futex) {
if (atomic_dec(&futex->val) != 1) {
futex->val = 0;
futex_wake(futex);

}
}

In a naïve multithreaded implementation of malloc/free, there is one mutex protecting
the heap, resulting in a bottleneck – a multithreaded program might be slowed down
considerably since all threads that manipulate the heap must compete for the mutex.

CS33 Intro to Computer Systems XXXVII–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Memory Allocation

• Multiple threads

• One heap
Bottleneck?

CS33 Intro to Computer Systems XXXVII–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Solution 1

• Divvy up the heap among the threads
– each thread has its own heap
– no mutexes required
– no bottleneck

• How much heap does each thread get?

CS33 Intro to Computer Systems XXXVII–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Solution 2

• Multiple “arenas”
– each with its own mutex
– thread allocates from the first one it can find whose

mutex was unlocked
» if none, then creates new one

– deallocations go back to original arena

The latter case implies that there is a mutex on per-thread heaps, for use when the
freeing thread is different from the mallocing thread.

CS33 Intro to Computer Systems XXXVII–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Solution 3

• Global heap plus per-thread heaps
– threads pull storage from global heap
– freed storage goes to per-thread heap

» unless things are imbalanced
• then thread moves storage back to global heap

– mutex on only the global heap
• What if one thread allocates and another frees

storage?

CS33 Intro to Computer Systems XXXVII–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Malloc/Free Implementations

• ptmalloc
– based on solution 2
– in glibc (i.e., used by default)

• tcmalloc
– based on solution 3
– from Google

• Which is best?

In this test program, each thread does a sequence of mallocs and frees.

CS33 Intro to Computer Systems XXXVII–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Test Program
const unsigned int N=64, nthreads=32, iters=10000000;
int main() {
void *tfunc(void *);
pthread_t thread[nthreads];
for (int i=0; i<nthreads; i++) {
pthread_create(&thread[i], 0, tfunc, (void *)i);

pthread_detach(thread[i]);
}
pthread_exit(0);

}
void *tfunc(void *arg) {
long i;

for (i=0; i<iters; i++) {
long *p = (long *)malloc(sizeof(long)*((i%N)+1));
free(p);

}
return 0;

}

CS33 Intro to Computer Systems XXXVII–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

Which is fastest?
a) glibc (i.e., standard Linux)
b) Google

CS33 Intro to Computer Systems XXXVII–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Compiling It …

% gcc -o ptalloc alloc.cc –lpthread

% gcc -o tcalloc alloc.cc –lpthread -ltcmalloc

The code was run on an Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz (4 cores).

The rows labelled user show the sums of the amount of time each thread spent running
in user mode. The rows labelled sys show the sums of the amount of time each thread
spent running in kernel mode. The rows labelled real show the time that elapsed from
when the command started to when it ended. It’s less than the sum of the user and sys
times because multiple cores were employed: for example, if two threads running
simultaneously (on different cores) each used 1 second of user time, the total user time
is 2 seconds, but the real time is one second.

CS33 Intro to Computer Systems XXXVII–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Running It (2014) …

$ time ./ptalloc

real 0m5.142s
user 0m20.501s
sys 0m0.024s
$ time ./tcalloc
real 0m1.889s

user 0m7.492s
sys 0m0.008s

This was run on a current CS department computer: Intel(R) Core(TM) i5-4690 CPU @
3.50GHz (4 cores).

CS33 Intro to Computer Systems XXXVII–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Running It (2022) …

$ time ./ptalloc

real 0m1.156s
user 0m3.456s
sys 0m0.004s
$ time ./tcalloc
real 0m0.876s

user 0m3.460s
sys 0m0.004s

strace is a system facility that supplies information about the system calls a process
uses. The –c flag tell is to print the cumulative statistics after the process terminates.
The –f flag tells it to include information on all threads and child processes.

CS33 Intro to Computer Systems XXXVII–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

What’s Going On (2014)?
$ strace –c –f ./ptalloc
…
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
100.00 0.040002 13 3007 520 futex
…

$ strace –c –f ./tcalloc
…
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------

…
0.00 0.000000 0 59 13 futex
…

CS33 Intro to Computer Systems XXXVII–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

What’s Going On (2022)?
$ strace –c –f ./ptalloc
…
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
…
31.23 0.019968 416 48 6 futex

…

$ strace –c –f ./tcalloc
…
% time seconds usecs/call calls errors syscall

------ ----------- ----------- --------- --------- ----------------
…
0.00 0.000000 0 42 3 futex
…

This program creates pairs of threads: one thread allocates storage, the other deallocates
storage. They communicate using producer-consumer communication.

CS33 Intro to Computer Systems XXXVII–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 1

#define N 64
#define npairs 16
#define allocsPerIter 1024
const long iters = 8*1024*1024/allocsPerIter;
#define BufSize 10240
typedef struct buffer {

int *buf[BufSize];
unsigned int nextin;
unsigned int nextout;
sem_t empty;
sem_t occupied;
pthread_t pthread;

pthread_t cthread;
} buffer_t;

The main function creates npairs (16) of communicating pairs of threads.

CS33 Intro to Computer Systems XXXVII–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 2

int main() {
long i;
buffer_t b[npairs];
for (i=0; i<npairs; i++) {
b[i].nextin = 0;
b[i].nextout = 0;

sem_init(&b[i].empty, 0, BufSize/allocsPerIter);
sem_init(&b[i].occupied, 0, 0);
pthread_create(&b[i].pthread, 0, prod, &b[i]);
pthread_create(&b[i].cthread, 0, cons, &b[i]);

}
for (i=0; i<npairs; i++) {

pthread_join(b[i].pthread, 0);
pthread_join(b[i].cthread, 0);

}
return 0;

}

To reduce the number of calls to sem_wait and sem_post, at each iteration the thread
calls malloc allocsPerIter (1024) times.

CS33 Intro to Computer Systems XXXVII–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 3

void *prod(void *arg) {
long i, j;
buffer_t *b = (buffer_t *)arg;
for (i = 0; i<iters; i++) {
sem_wait(&b->empty);
for (j = 0; j<allocsPerIter; j++) {

b->buf[b->nextin] = malloc(sizeof(int)*((j%N)+1));
if (++b->nextin >= BufSize)
b->nextin = 0;

}
sem_post(&b->occupied);

}

return 0;
}

CS33 Intro to Computer Systems XXXVII–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 4

void *cons(void *arg) {
long i, j;
buffer_t *b = (buffer_t *)arg;
for (i = 0; i<iters; i++) {
sem_wait(&b->occupied);
for (j = 0; j<allocsPerIter; j++) {

free(b->buf[b->nextout]);
if (++b->nextout >= BufSize)
b->nextout = 0;

}
sem_post(&b->empty);

}

return 0;
}

The code was run on a SunLab machine (an Intel(R) Core(TM)2 Quad CPU Q6600 @
2.40GHz).

CS33 Intro to Computer Systems XXXVII–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Running It (2014) …

$ time ./ptalloc2

real 0m1.087s
user 0m3.744s
sys 0m0.204s
$ time ./tcalloc2
real 0m3.535s

user 0m11.361s
sys 0m2.112s

This was run on a current CS department computer: Intel(R) Core(TM) i5-4690 CPU @
3.50GHz (4 cores).

CS33 Intro to Computer Systems XXXVII–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Running It (2022) …

$ time ./ptalloc2

real 0m0.367s
user 0m1.187s
sys 0m0.179s
$ time ./tcalloc2
real 0m0.426s

user 0m1.211s
sys 0m0.290s

CS33 Intro to Computer Systems XXXVII–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

What’s Going On (2014)?

$ strace –c –f ./ptalloc2
…
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
94.96 2.347314 44 53653 14030 futex
…

$ strace –c –f ./tcalloc2
…
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
93.86 6.604632 36 185731 45222 futex
…

CS33 Intro to Computer Systems XXXVII–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

What’s Going On (2022)?

$ strace –c –f ./ptalloc2
…
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
92.26 4.544802 66 68250 13340 futex
…

$ strace –c –f ./tcalloc2
…
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
91.40 3.439416 52 65165 12182 futex
…

CS33 Intro to Computer Systems XXXVII–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

You’ll Soon Finish CS 33 …

• You might
– celebrate

– take another systems course
» 320
» 1380
» 1660
» 1670
» 1680

– become a 33 TA

2660 is for graduate students only and combines 1660 and 1620.

2670 is for graduate students only and combines 1670 and 1690.

CS33 Intro to Computer Systems XXXVII–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Systems Courses Next Semester
• CS 320 (Intro to Software Engineering)

– you’ve mastered low-level systems programming
– now do things at a higher level
– learn software-engineering techniques using Java, XML,

etc.
• CS 1380 (Distributed Systems)

– you now know how things work on one computer
– what if you’ve got lots of computers?
– some may have crashed, others may have been taken

over by your worst (and smartest) enemy
• CS 1660/1620/2660 (Computer Systems Security)

– liked buffer?
– you’ll really like 1660

• CS 1670/1690/2670 (Operating Systems)
– still mystified about what the OS does?
– write your own!

CS33 Intro to Computer Systems XXXVII–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

The End
Well, not quite …

Database is due on 12/16

Happy Coding and Happy Holidays!

