CS 33

Multithreaded Programming VIl

CS33 Intro to Computer Systems XXXVII-1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Implementing Mutexes

« Strategy

— make the usual case (no waiting) very fast

— can afford to take more time for the other case
(waiting for the mutex)

CS33 Intro to Computer Systems XXXVII-2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Futexes

« Safe, efficient kernel conditional queueing in Linux

 All operations performed atomically
— futex wailt (futex t *futex, 1int val)
» if futex->val is equal to val, then sleep
» otherwise return
— futex wake (futex t *futex)

» wake up one thread from futex’s wait queue, if there are
any waiting threads

CS33 Intro to Computer Systems XXXVII-3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Ancillary Functions

e int atomic inc(int *val)

— add 1 to *val, return its original value

* int atomic dec(int *val)

— subtract 1 from *val, return its original value

e int CAS (1int *ptr,
int tmp = *ptr;
if (*ptr old)

*ptr = new;

return tmp;

int old,

int new) {

CS33 Intro to Computer Systems XXXVII-4

Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Attempt 1

void lock (futex t *futex)
int c;
while ((c = atomic inc(&futex->val)) != 0)

futex wait (futex, c+1);

void unlock (futex t *futex) {
futex->val = 0;

futex wake (futex);

CS33 Intro to Computer Systems XXXVII-5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

void lock (futex t *futex)
int c;

while ((c = atomic inc(&futex->val)) != 0)

fut Lt (futex, c+1l); - :
DIEERS RELRE 2RBRESey | Chaly Which of the following won’t happen

} if the futex’s value is zero and three
threads call lock at the same time?
a) one might return immediately, but

. *
void unlock (futex_t *futex) { at least two will call futex_ wait.

futex->val = 0; b) even though unlock is called
futex wake (futex) ; appropriately, one thread will
| B never return from futex_ wait.

c) threads might return from
futex_wait immediately, because
the futex’s value is not equal to
c+1.

CS33 Intro to Computer Systems XXXVII-6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Attempt 2

void lock (futex t *futex)

int c;
if ((c = CAS(&futex->val, 0, 1) != 0)
do {
if (c == || (CAS (&futex->val, 1, 2) != 0))

futex wait (futex, 2);
while ((c = CAS(&futex->val, 0, 2)) != 0))

void unlock (futex t *futex)
if (atomic dec(&futex->val) != 1) {
futex->val = 0;

futex wake (futex);

}

CS33 Intro to Computer Systems XXXVII-7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Memory Allocation

» Multiple threads |
— Bottleneck?

* One heap

CS33 Intro to Computer Systems XXXVII-8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Solution 1

* Divvy up the heap among the threads

— each thread has its own heap
— no mutexes required
— no bottleneck

 How much heap does each thread get?

CS33 Intro to Computer Systems XXXVII-9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Solution 2

* Multiple “arenas”

— each with its own mutex

— thread allocates from the first one it can find whose
mutex was unlocked

» if none, then creates new one
— deallocations go back to original arena

CS33 Intro to Computer Systems XXXVII-10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Solution 3

* Global heap plus per-thread heaps

— threads pull storage from global heap
— freed storage goes to per-thread heap

» unless things are imbalanced
- then thread moves storage back to global heap

— mutex on only the global heap

« What if one thread allocates and another frees
storage?

CS33 Intro to Computer Systems XXXVII-11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Malloc/Free Implementations

* ptmalloc

— based on solution 2

— in glibc (i.e., used by default)
« tcmalloc

— based on solution 3
— from Google

* Which is best?

CS33 Intro to Computer Systems XXXVII-12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Test Program

const unsigned int N=64, nthreads=32, 1ters=10000000;
int main() {
void *tfunc (void *);
pthread t thread[nthreads];
for (int 1i=0; i<nthreads; 1++) {
pthread create(&thread[i], 0, tfunc, (void *)1i);
pthread detach (thread[i]):;
}
pthread exit (0);
}
void *tfunc(void *arg) {
long i;
for (1=0; i<iters; i++) {
long *p = (long *)malloc (sizeof (long)* ((13N)+1));
free(p);
}

return 0O;
}

CS33 Intro to Computer Systems XXXVII-13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

Which is fastest?
a) glibc (i.e., standard Linux)
b) Google

CS33 Intro to Computer Systems XXXVII-14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Compiling It ...

5 gcc -o ptalloc alloc.cc —-lpthread

5 gcc -o tcalloc alloc.cc —-lpthread -ltcmalloc

CS33 Intro to Computer Systems XXXVII-15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Running It (2014) ...

S time
real
user
SYS

S time
real
user

SYS

./ptalloc

Om5.142s

Om20.501s
Om0.024s

./tcalloc

Oml.889s
Om7.492s
Om0.008s

CS33 Intro to Computer Systems XXXVII-16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Running It (2022) ...

S time
real
user
SYS

S time
real
user

SYS

./ptalloc

Oml.156s
Om3.450s
Om0.004s

./tcalloc

Om0.876s
Om3.460s
Om0.004s

CS33 Intro to Computer Systems

XXXVII-17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

What’s Going On (2014)?

$ strace -c¢ —-f ./ptalloc
$ time seconds usecs/call

100.00 0.040002 13

S strace -c¢c —-f ./tcalloc

% time seconds usecs/call

0.00 0.000000 0

calls errors syscall
3007 520 futex

calls errors syscall
59 13 futex

CS33 Intro to Computer Systems

XXXVII-18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

What’s Going On (2022)?

$ strace -c¢ —-f ./ptalloc

% time seconds usecs/call calls errors syscall

31.23 0.019968 416 48 6 futex

S strace -c¢c —-f ./tcalloc

% time seconds usecs/call calls errors syscall

0.00 0.000000 0 42 3 futex

CS33 Intro to Computer Systems XXXVII-19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 1

tdefine N 64

#tdefine npairs 16

tdefine allocsPerIter 1024

const long iters = 8*1024*1024/allocsPerlter;

#define BufSize 10240

typedef struct buffer {
int *buf[BufSize];
unsigned int nextin;
unsigned int nextout;
sem t empty;
sem t occupied;
pthread t pthread;
pthread t cthread;

} buffer t;

CS33 Intro to Computer Systems XXXVII-20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 2

int main () {
long 1;
buffer t b[npairs];
for (i=0; i<npairs; i++) {
b[i] .nextin = 0;
bl[i] .nextout = 0;
sem init(&b[i].empty, 0, BufSize/allocsPerlter);
sem init(&b[1].occupied, 0, O0);
pthread create(&b[1i].pthread, 0, prod, &b[i1]);
pthread create(&b[i].cthread, 0, cons, &b[1]);
}
for (i=0; i<npairs; i++) {
pthread join(b[i].pthread, 0);
pthread join(b[i].cthread, 0);
}

return 0O;

}

CS33 Intro to Computer Systems XXXVII-21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 3

void *prod(void *arg) {

long i, J;
buffer t *b = (buffer t *)arg;
for (1 = 0; i<iters; 1++) {

sem walt (&b->empty) ;
for (3 = 0; j<allocsPerlter; j++) {
b->buf [b->nextin] = malloc(sizeof (int)* ((jJ%3N)+1))
if (++b->nextin >= BufSize)
b->nextin = 0;
}
sem post (&b->occupied) ;

}

return 0O;

CS33 Intro to Computer Systems XXXVII-22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 4

void *cons (void *arg) {

long i, J;
buffer t *b = (buffer t *)arg;
for (1 = 0; i<iters; 1++) {

sem walt (&b->occupied) ;

for (3 = 0; j<allocsPerlter; j++) {
free (b->buf [b->nextout]) ;
if (++b->nextout >= BufSize)

b->nextout = 0;
}
sem post (&b->empty) ;
}

return 0O;

CS33 Intro to Computer Systems XXXVII-23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Running It (2014) ...

S time
real
user
SYS

S time
real
user

SYS

./ptalloc?2

Oml.087s
Om3.744s
Om0.204s

./tcalloc?

Om3.535s
Omll.36ls
Om2.112s

CS33 Intro to Computer Systems XXXVII-24

Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Running It (2022) ...

S time
real
user
SYS

S time
real
user

SYS

./ptalloc?2

Om0O.367s
Oml.187s
Om0.179s

./tcalloc?

Om0.4206s
Oml.211s
Om0.290s

CS33 Intro to Computer Systems XXXVII-25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

What’s Going On (2014)?

S strace -c¢ —-f ./ptalloc?
% time seconds usecs/call calls errors syscall
$ strace -c¢ —-f ./tcalloc2

% time seconds usecs/call calls errors syscall

93.86 6.604632 36 185731 45222 futex

CS33 Intro to Computer Systems XXXVII-26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

What’s Going On (2022)?

$ strace -c¢ —-f ./ptalloc2

% time seconds usecs/call calls errors syscall

S strace -c¢c —-f ./tcalloc?2

% time seconds usecs/call calls errors syscall

CS33 Intro to Computer Systems XXXVII-27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

You’ll Soon Finish CS 33 ...

* You might . o

— celebrate Yﬂ

— take another systems course
» 320
» 1380
» 1660
» 1670
» 1680

— become a 33 TA

CS33 Intro to Computer Systems XXXVII-28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Systems Courses Next Semester

« CS 320 (Intro to Software Engineering)
— you’ve mastered low-level systems programming
— now do things at a higher level

— learn software-engineering techniques using Java, XML,
etc.

« CS 1380 (Distributed Systems)
— you now know how things work on one computer
— what if you’ve got lots of computers?

— some may have crashed, others may have been taken
over by your worst (and smartest) enemy

« CS 1660/1620/2660 (Computer Systems Security)
— liked buffer?
— you’ll really like 1660

« CS1670/1690/2670 (Operating Systems)
— still mystified about what the OS does?
— write your own!

CS33 Intro to Computer Systems XXXVII-29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

The End

Well, not quite ...
Database is due on 12/16

Happy Coding and Happy Holidays!

CS33 Intro to Computer Systems XXXVII-30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

