
CS33 Intro to Computer Systems XXXVII–1 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

CS 33
Multithreaded Programming VII

CS33 Intro to Computer Systems XXXVII–2 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Implementing Mutexes

• Strategy
– make the usual case (no waiting) very fast
– can afford to take more time for the other case

(waiting for the mutex)

CS33 Intro to Computer Systems XXXVII–3 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Futexes

• Safe, efficient kernel conditional queueing in Linux
• All operations performed atomically

– futex_wait(futex_t *futex, int val)
» if futex->val is equal to val, then sleep
» otherwise return

– futex_wake(futex_t *futex)
» wake up one thread from futex’s wait queue, if there are

any waiting threads

CS33 Intro to Computer Systems XXXVII–4 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Ancillary Functions

• int atomic_inc(int *val)
– add 1 to *val, return its original value

• int atomic_dec(int *val)
– subtract 1 from *val, return its original value

• int CAS(int *ptr, int old, int new) {

int tmp = *ptr;
if (*ptr == old)

*ptr = new;
return tmp;

}

CS33 Intro to Computer Systems XXXVII–5 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Attempt 1

void lock(futex_t *futex) {

int c;

while ((c = atomic_inc(&futex->val)) != 0)

futex_wait(futex, c+1);

}

void unlock(futex_t *futex) {

futex->val = 0;

futex_wake(futex);

}

CS33 Intro to Computer Systems XXXVII–6 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 1

void lock(futex_t *futex) {

int c;

while ((c = atomic_inc(&futex->val)) != 0)

futex_wait(futex, c+1);

}

void unlock(futex_t *futex) {

futex->val = 0;

futex_wake(futex);

}

Which of the following won’t happen
if the futex’s value is zero and three
threads call lock at the same time?
a) one might return immediately, but

at least two will call futex_wait.
b) even though unlock is called

appropriately, one thread will
never return from futex_wait.

c) threads might return from
futex_wait immediately, because
the futex’s value is not equal to
c+1.

CS33 Intro to Computer Systems XXXVII–7 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Attempt 2
void lock(futex_t *futex) {

int c;

if ((c = CAS(&futex->val, 0, 1) != 0)
do {

if (c == 2 || (CAS(&futex->val, 1, 2) != 0))

futex_wait(futex, 2);

while ((c = CAS(&futex->val, 0, 2)) != 0))
}

void unlock(futex_t *futex) {
if (atomic_dec(&futex->val) != 1) {

futex->val = 0;

futex_wake(futex);

}
}

CS33 Intro to Computer Systems XXXVII–8 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Memory Allocation

• Multiple threads

• One heap
Bottleneck?

CS33 Intro to Computer Systems XXXVII–9 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Solution 1

• Divvy up the heap among the threads
– each thread has its own heap
– no mutexes required
– no bottleneck

• How much heap does each thread get?

CS33 Intro to Computer Systems XXXVII–10 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Solution 2

• Multiple “arenas”
– each with its own mutex
– thread allocates from the first one it can find whose

mutex was unlocked
» if none, then creates new one

– deallocations go back to original arena

CS33 Intro to Computer Systems XXXVII–11 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Solution 3

• Global heap plus per-thread heaps
– threads pull storage from global heap
– freed storage goes to per-thread heap

» unless things are imbalanced
• then thread moves storage back to global heap

– mutex on only the global heap
• What if one thread allocates and another frees

storage?

CS33 Intro to Computer Systems XXXVII–12 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Malloc/Free Implementations

• ptmalloc
– based on solution 2
– in glibc (i.e., used by default)

• tcmalloc
– based on solution 3
– from Google

• Which is best?

CS33 Intro to Computer Systems XXXVII–13 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Test Program
const unsigned int N=64, nthreads=32, iters=10000000;
int main() {

void *tfunc(void *);
pthread_t thread[nthreads];

for (int i=0; i<nthreads; i++) {

pthread_create(&thread[i], 0, tfunc, (void *)i);
pthread_detach(thread[i]);

}

pthread_exit(0);
}

void *tfunc(void *arg) {

long i;
for (i=0; i<iters; i++) {

long *p = (long *)malloc(sizeof(long)*((i%N)+1));
free(p);

}

return 0;
}

CS33 Intro to Computer Systems XXXVII–14 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Quiz 2

Which is fastest?
a) glibc (i.e., standard Linux)
b) Google

CS33 Intro to Computer Systems XXXVII–15 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Compiling It …

% gcc -o ptalloc alloc.cc –lpthread

% gcc -o tcalloc alloc.cc –lpthread -ltcmalloc

CS33 Intro to Computer Systems XXXVII–16 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Running It (2014) …

$ time ./ptalloc

real 0m5.142s

user 0m20.501s

sys 0m0.024s

$ time ./tcalloc

real 0m1.889s

user 0m7.492s

sys 0m0.008s

CS33 Intro to Computer Systems XXXVII–17 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Running It (2022) …

$ time ./ptalloc

real 0m1.156s

user 0m3.456s

sys 0m0.004s

$ time ./tcalloc

real 0m0.876s

user 0m3.460s

sys 0m0.004s

CS33 Intro to Computer Systems XXXVII–18 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

What’s Going On (2014)?
$ strace –c –f ./ptalloc
…

% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------

100.00 0.040002 13 3007 520 futex

…

$ strace –c –f ./tcalloc
…

% time seconds usecs/call calls errors syscall

------ ----------- ----------- --------- --------- ----------------
…

0.00 0.000000 0 59 13 futex

…

CS33 Intro to Computer Systems XXXVII–19 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

What’s Going On (2022)?
$ strace –c –f ./ptalloc
…

% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------

…

31.23 0.019968 416 48 6 futex
…

$ strace –c –f ./tcalloc

…

% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------

…

0.00 0.000000 0 42 3 futex
…

CS33 Intro to Computer Systems XXXVII–20 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 1

#define N 64
#define npairs 16

#define allocsPerIter 1024
const long iters = 8*1024*1024/allocsPerIter;

#define BufSize 10240

typedef struct buffer {
int *buf[BufSize];

unsigned int nextin;

unsigned int nextout;
sem_t empty;

sem_t occupied;

pthread_t pthread;
pthread_t cthread;

} buffer_t;

CS33 Intro to Computer Systems XXXVII–21 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 2

int main() {
long i;

buffer_t b[npairs];
for (i=0; i<npairs; i++) {

b[i].nextin = 0;

b[i].nextout = 0;
sem_init(&b[i].empty, 0, BufSize/allocsPerIter);

sem_init(&b[i].occupied, 0, 0);

pthread_create(&b[i].pthread, 0, prod, &b[i]);
pthread_create(&b[i].cthread, 0, cons, &b[i]);

}

for (i=0; i<npairs; i++) {
pthread_join(b[i].pthread, 0);

pthread_join(b[i].cthread, 0);

}
return 0;

}

CS33 Intro to Computer Systems XXXVII–22 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 3

void *prod(void *arg) {
long i, j;

buffer_t *b = (buffer_t *)arg;
for (i = 0; i<iters; i++) {

sem_wait(&b->empty);

for (j = 0; j<allocsPerIter; j++) {
b->buf[b->nextin] = malloc(sizeof(int)*((j%N)+1));
if (++b->nextin >= BufSize)

b->nextin = 0;
}

sem_post(&b->occupied);

}
return 0;

}

CS33 Intro to Computer Systems XXXVII–23 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Test Program 2, part 4

void *cons(void *arg) {
long i, j;

buffer_t *b = (buffer_t *)arg;
for (i = 0; i<iters; i++) {

sem_wait(&b->occupied);

for (j = 0; j<allocsPerIter; j++) {
free(b->buf[b->nextout]);

if (++b->nextout >= BufSize)

b->nextout = 0;
}

sem_post(&b->empty);

}
return 0;

}

CS33 Intro to Computer Systems XXXVII–24 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Running It (2014) …

$ time ./ptalloc2

real 0m1.087s

user 0m3.744s

sys 0m0.204s

$ time ./tcalloc2

real 0m3.535s

user 0m11.361s

sys 0m2.112s

CS33 Intro to Computer Systems XXXVII–25 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Running It (2022) …

$ time ./ptalloc2

real 0m0.367s

user 0m1.187s

sys 0m0.179s

$ time ./tcalloc2

real 0m0.426s

user 0m1.211s

sys 0m0.290s

CS33 Intro to Computer Systems XXXVII–26 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

What’s Going On (2014)?

$ strace –c –f ./ptalloc2
…

% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------

94.96 2.347314 44 53653 14030 futex

…
$ strace –c –f ./tcalloc2

…

% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------

93.86 6.604632 36 185731 45222 futex

…

CS33 Intro to Computer Systems XXXVII–27 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

What’s Going On (2022)?

$ strace –c –f ./ptalloc2
…

% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------

92.26 4.544802 66 68250 13340 futex

…
$ strace –c –f ./tcalloc2

…

% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------

91.40 3.439416 52 65165 12182 futex

…

CS33 Intro to Computer Systems XXXVII–28 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

You’ll Soon Finish CS 33 …

• You might
– celebrate

– take another systems course
» 320
» 1380
» 1660
» 1670
» 1680

– become a 33 TA

CS33 Intro to Computer Systems XXXVII–29 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

Systems Courses Next Semester
• CS 320 (Intro to Software Engineering)

– you’ve mastered low-level systems programming
– now do things at a higher level
– learn software-engineering techniques using Java, XML,

etc.
• CS 1380 (Distributed Systems)

– you now know how things work on one computer
– what if you’ve got lots of computers?
– some may have crashed, others may have been taken

over by your worst (and smartest) enemy
• CS 1660/1620/2660 (Computer Systems Security)

– liked buffer?
– you’ll really like 1660

• CS 1670/1690/2670 (Operating Systems)
– still mystified about what the OS does?
– write your own!

CS33 Intro to Computer Systems XXXVII–30 Copyright © 2022 Thomas W. Doeppner. All rights reserved.

The End
Well, not quite …

Database is due on 12/16

Happy Coding and Happy Holidays!

